DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4000B gates
 Dual 3-input NOR gate and inverter

Product specification January 1995
File under Integrated Circuits, IC04

Dual 3-input NOR gate and inverter

DESCRIPTION

The HEF4000B provides the positive dual 3-input NOR function. A single stage inverting function with standard output performance is also accomplished. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

Fig. 1 Functional diagram.

Fig. 3 Logic diagram.

Dual 3-input NOR gate and inverter

DC CHARACTERISTICS

For the single inverter stage $\left(\mathrm{I}_{7} / \mathrm{O}_{3}\right)$:
see Family Specifications for input voltages HIGH and LOW (unbuffered stages only).

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays I_{1} to $\mathrm{I}_{6} \rightarrow \mathrm{O}_{1}, \mathrm{O}_{2}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tphL $^{\text {; }}$ tpLH	$\begin{aligned} & 70 \\ & 35 \\ & 30 \end{aligned}$	$\begin{array}{r} 140 \\ 70 \\ 55 \end{array}$	ns ns ns	$\begin{aligned} & 43 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{I}_{7} \rightarrow \mathrm{O}_{3}$ (unbuffered output)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }} ; \mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 45 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 40 \end{aligned}$	ns ns ns	$\begin{aligned} & 18 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 14 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 12 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} \hline 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

	$\mathbf{V}_{\text {DD }}$ \mathbf{V}	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power	5	$1000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{C}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$7700 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{C}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$28700 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)			

Dual 3-input NOR gate and inverter

APPLICATION INFORMATION

The following information (Figs 4 to 7) is only for the single inverter stage $\left(\mathrm{I}_{7} / \mathrm{O}_{3}\right)$.

Fig. 4 Voltage gain $\left(\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{I}}\right)$ as a function of supply voltage.

This is also an example of an analogue amplifier using the single inverter stage $\left(\mathrm{I}_{7} / \mathrm{O}_{3}\right)$ of the HEF4000B.

Fig. 6 Test set-up for measuring graphs of Figs 4 and 5.

Dual 3-input NOR gate and inverter

Fig. 7 Test set-up for measuring forward transconductance $\mathrm{g}_{\mathrm{fs}}=\mathrm{di}_{\mathrm{o}} / \mathrm{dv}_{\mathrm{i}}$ at v_{o} is constant (see also graph Fig.8).

A: average
B: average +2 s ,
C: average -2 s , in where ' s ' is the observed standard deviation.

Fig. 8 Typical forward transconductance $g_{f s}$ as a function of the supply voltage at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

