INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT195 4-bit parallel access shift register

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT195

FEATURES

- · Asynchronous master reset
- J, K, (D) inputs to the first stage
- Fully synchronous serial or parallel data transfer
- · Shift right and parallel load capability
- · Complement output from the last stage
- Output capability: standard
- · I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT195 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT195 performs serial, parallel, serial-to-parallel or parallel-to-serial data transfer at very high speeds. The "195" operates on two primary modes: shift right $(Q_0 \rightarrow Q_1)$ and parallel load, which are controlled

by the state of the parallel load enable (\overline{PE}) input. Serial data enters the first flip-flop (Q_0) via the J and \overline{K} inputs when the \overline{PE} input is HIGH and shifted one bit in the direction $Q_0 \to Q_1 \to Q_2 \to Q_3$ following each LOW-to-HIGH clock transition. The J and \overline{K} inputs provide the flexibility of the $J\overline{K}$ type input for special applications and by tying the pins together, the simple D-type input for general applications. The "195" appears as four common clocked D flip-flops when the \overline{PE} input is LOW.

After the LOW-to-HIGH clock transition, data on the parallel inputs (D $_0$ to D $_3$) is transferred to the respective Q $_0$ to Q $_3$ outputs. Shift left operation (Q $_3 \rightarrow$ Q $_2$) can be achieved by tying the Q $_n$ outputs to the D $_{n-1}$ inputs and holding the \overline{PE} input LOW.

All parallel and serial data transfers are synchronous, occurring after each LOW-to-HIGH clock transition. There is no restriction on the activity of the J, \overline{K} , D_n and \overline{PE} inputs for logic operation other than the set-up and hold time requirements. A LOW on the asynchronous master reset (\overline{MR}) input sets all Q outputs LOW, independent of any other input condition.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIBOL	PARAWETER	CONDITIONS	нс	нст	UNII	
t _{PHL} / t _{PLH}	propagation delay CP to Q _n	C _L = 15 pF; V _{CC} = 5 V	15	15	ns	
f _{max}	maximum clock frequency		57	57	MHz	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	105	105	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

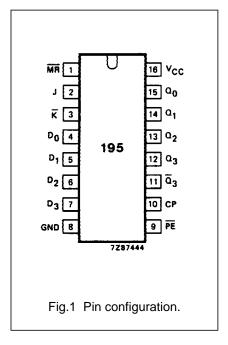
f_o = output frequency in MHz

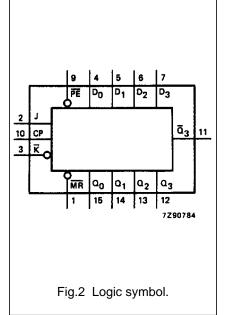
 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

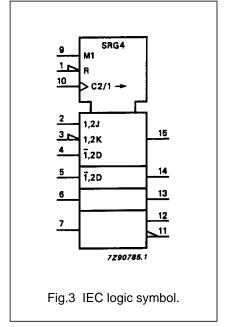
C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1,5 V

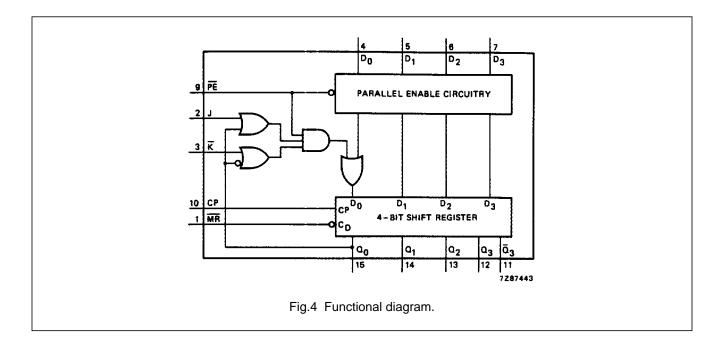

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


74HC/HCT195

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	MR	master reset input (active LOW)
2	J	first stage J-input (active HIGH)
3	K	first stage K-input (active LOW)
4, 5, 6, 7	D ₀ to D ₃	parallel data inputs
8	GND	ground (0 V)
9	PE	parallel enable input (active LOW)
10	СР	clock input (LOW-to-HIGH edge-triggered)
11	\overline{Q}_3	inverted output from the last stage
15, 14, 13, 12	Q ₀ to Q ₃	parallel outputs
16	V _{CC}	positive supply voltage

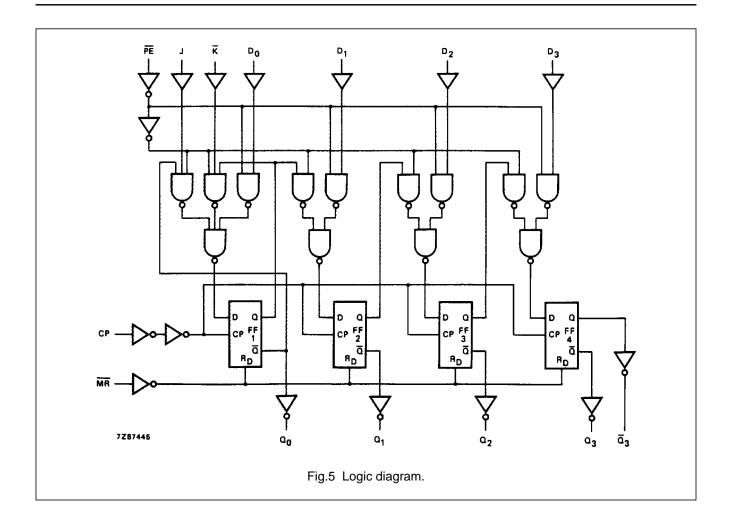


4-bit parallel access shift register

74HC/HCT195

APPLICATIONS

- · Serial data transfer
- Parallel data transfer
- Serial-to-parallel data transfer
- Parallel-to-serial data transfer


FUNCTION TABLE

OPERATING MODES		OUTPUTS									
OPERATING MODES	MR	СР	PE	J	K	D _n	Q_0	Q ₁	Q ₂	Q ₃	\overline{Q}_3
asynchronous reset	L	Х	Х	Х	Х	Х	L	L	L	L	Н
shift, set first stage	Н	1	h	h	h	Х	Н	q0	q1	q2	<u>q</u> 2
shift, reset first stage	Н	↑	h	1	l I	X	L	q0	q1	q2	<u>q</u> 2
shift, toggle first stage	Н	1	h	h	I	X	_ 0	q0	q1	q2	<u>q</u> 2
shift, retain first stage	Н	1	h	I	h	Х	q0	q0	q1	q2	_ q2
parallel load	Н	1	I	Χ	Х	d _n	d ₀	d ₁	d_2	d ₃	\overline{d}_3

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition
 - q, d = lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH clock transition
 - X = don't care
 - ↑ = LOW-to-HIGH clock transition

74HC/HCT195

4-bit parallel access shift register

74HC/HCT195

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TES	T CONDITIONS
CVMDOL		74HC									WAVEFORMS
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.	·	(•)	
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{PHL}	propagation delay MR to Q _n		41 15 12	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6
t _W	clock pulse width HIGH or LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _W	master reset pulse width LOW	80 16 14	11 4 3		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8
t _{rem}	removal time MR to CP	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8
t _{su}	set-up time J to CP	100 20 17	33 12 10		125 25 21		150 30 26		ns	2.0 4.5 6.0	Figs 8 and 9
t _{su}	set-up time \overline{K} , \overline{PE} , D_n to CP	80 16 14	25 9 7		100 20 17		120 24 20		ns	2.0 4.5 6.0	Figs 8 and 9
t _h	hold time J, K, PE, D _n to CP	3 3 3	-8 -3 -2		3 3 3		3 3 3		ns	2.0 4.5 6.0	Figs 8 and 9
f _{max}	maximum clock pulse frequency	6 30 35	17 52 62		5 24 28		4 20 24		MHz	2.0 4.5 6.0	Fig.6

4-bit parallel access shift register

74HC/HCT195

DC CHARACTERISTICS FOR HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

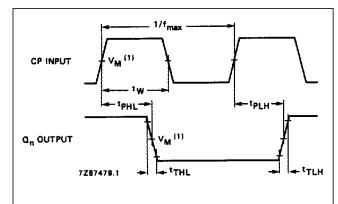
Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
PE	0.65
all others	0.35


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL				T	amb (°		TES	TEST CONDITIONS			
	PARAMETER		74HCT								WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORWS
		min.	typ.	max.	min.	max.	min.	max.		(' '	
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		18	32		40		48	ns	4.5	Fig.6
t _{PHL}	propagation delay MR to Q _n		17	35		44		53	ns	4.5	Fig.8
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _W	clock pulse width HIGH or LOW	20	6		25		30		ns	4.5	Fig.6
t _W	master reset pulse width LOW	16	6		20		24		ns	4.5	Fig.8
t _{rem}	removal time MR to CP	16	6		20		24		ns	4.5	Fig.8
t _{su}	set-up time J, K, PE to CP	20	12		25		30		ns	4.5	Figs 8 and 9
t _{su}	set-up time D _n to CP	16	6		20		24		ns	4.5	Figs 8 and 9
t _h	hold time J, K, PE, D _n to CP	3	-5		3		3		ns	4.5	Figs 8 and 9
f _{max}	maximum clock pulse frequency	27	52		22		18		MHz	4.5	Fig.6

74HC/HCT195

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3V; V_I = GND to 3 V.

Fig.6 Waveforms showing the clock (CP) to output (Q_n) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency.

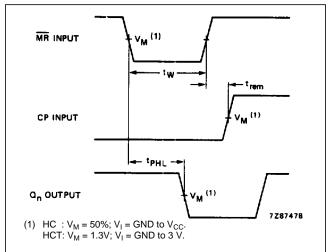
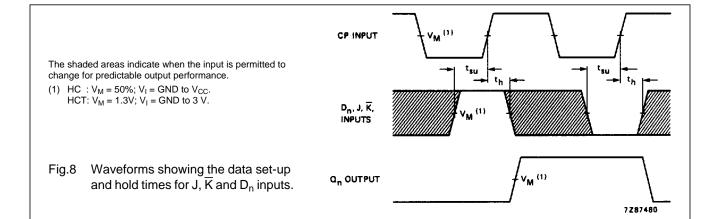
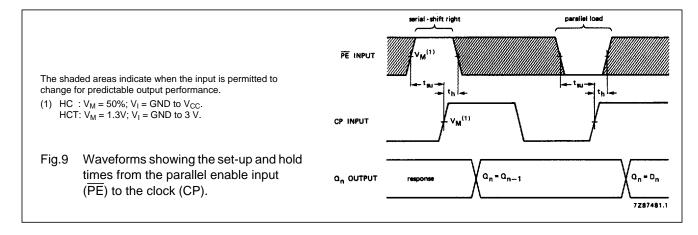




Fig.7 Waveforms showing the master reset (\overline{MR}) pulse width, the master reset to output (Q_n) propagation delays and the master reset to clock (CP) removal time

4-bit parallel access shift register

74HC/HCT195

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".