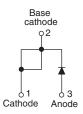
www.vishay.com

Vishay Semiconductors


Ultrafast Rectifier, 15 A Fred Pt®

TO-220 FULL-PAK

TO-220AC

VS-15ETH06PbF VS-15ETH06-N3

VS-15ETH06FPPbF VS-15ETH06FP-N3

PRODUCT SUMMARY								
Package	TO-220AC, TO-220FP							
I _{F(AV)}	15 A							
V _R	600 V							
V _F at I _F	2.2 V							
t _{rr} typ.	22 ns							
T _J max.	175 °C							
Diode variation	Single die							

FEATURES

- Hyperfast recovery time
- Low forward voltage drop
- 175 °C operating junction temperature
- Low leakage current
- Single die center tap module
- Fully isolated package (V_{INS} = 2500 V_{RMS})
- UL E78996 pending
- Compliant to RoHS Directive 2002/95/EC
- Designed and qualified according to JEDEC-JESD47
- Halogen-free according to IEC 61249-2-21 definition (-N3 only)

DESCRIPTION/APPLICATIONS

State of the art hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, hyperfast recovery time, and soft recovery.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in PFC boost stage in the AC/DC section of SMPS, inverters or as freewheeling diodes.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

ABSOLUTE MAXIMUM RATINGS									
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS					
Peak repetitive reverse voltage	V _{RRM}		600	V					
Average rectified forward current	I	T _C = 140 °C	15						
Average rectilied forward current	I _{F(AV)}	T _C = 80 °C (FULL-PAK)	15						
Non-repetitive peak surge current	1	T _J = 25 °C	120	А					
Non-repetitive peak surge current	IFSM	T _J = 25 °C (FULL-PAK)	180						
Peak repetitive forward current	I _{FM}		30						
Operating junction and storage temperatures	T _J , T _{Stg}		- 65 to 175	°C					

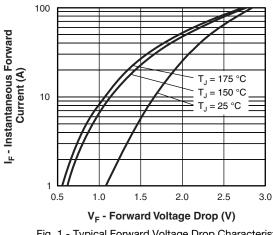
ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)										
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS				
Breakdown voltage, blocking voltage	V_{BR}, V_{R}	I _R = 100 μA	600	-	-					
Forward voltage	V _F	I _F = 15 A	-	1.8	2.2	V				
		I _F = 15 A, T _J = 150 °C	-	1.3	1.6					
	I _R	$V_R = V_R$ rated	-	0.2	50					
Reverse leakage current		$T_J = 150 \text{ °C}, V_R = V_R \text{ rated}$	-	30	500	μA				
Junction capacitance	CT	V _R = 600 V	-	20	-	pF				
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8.0	-	nH				

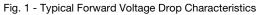
Revision: 02-Jan-12

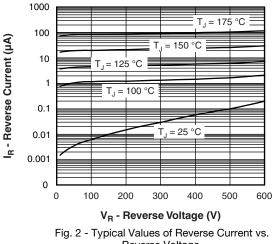
Document Number: 94002

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

(e3) RoHS


HALOGEN FREE Available


www.vishay.com


Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS ($T_C = 25$ °C unless otherwise specified)										
PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS			
		$I_F = 1 \text{ A}, \text{ d}I_F/\text{d}t = 100$	$I_F = 1 \text{ A}, \text{ d}I_F/\text{d}t = 100 \text{ A}/\mu\text{s}, \text{ V}_R = 30 \text{ V}$		22	30				
Reverse recovery time	+	$I_F = 15 \text{ A}, \text{ d}I_F/\text{d}t = 100$	0 A/µs, V _R = 30 V	-	28	35	20			
neverse recovery time	t _{rr}	T _J = 25 °C		-	29	-	ns			
		T _J = 125 °C	I _F = 15 A dI _F /dt = 200 A/μs V _R = 390 V	-	75	-				
Peak recovery current	I _{RRM}	T _J = 25 °C		-	3.5	-	А			
Feak recovery current		T _J = 125 °C		-	7	-				
	Q _{rr}	T _J = 25 °C		-	57	-	nC			
Reverse recovery charge		T _J = 125 °C		-	300	-	no			
Reverse recovery time	t _{rr}		I _F = 15 A	-	51	-	ns			
Peak recovery current	I _{RRM}	T _J = 125 °C	dI _F /dt = 800 A/µs	-	20	-	А			
Reverse recovery charge	Q _{rr}		V _R = 390 V	-	580	-	nC			

THERMAL MECHANICAL SPECIFICATIONS										
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS				
Maximum junction and storage temperature range	T _J , T _{Stg}		- 65	-	175	°C				
Thermal resistance,	D		-	1.0	1.3					
junction to case (FULL-PAK)	R _{thJC}		-	3.0	3.5					
Thermal resistance, junction to ambient per leg	R _{thJA}	Typical socket mount	-	-	70	°C/W				
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	.5 -					
\A/-:			-	2.0	-	g				
Weight			-	0.07	-	oz.				
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)				
Marking davias		Case style TO-220AC	15ETH06							
Marking device		Case style TO-220 FULL-PAK	15ETH06FP							

Reverse Voltage

Revision: 02-Jan-12

2

Document Number: 94002

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Semiconductors

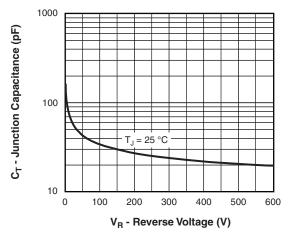


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

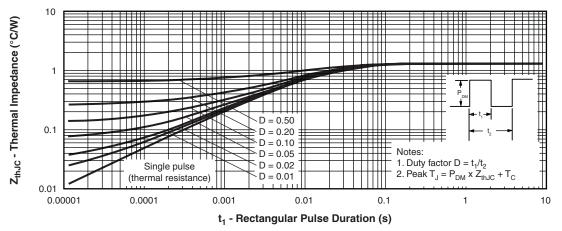


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

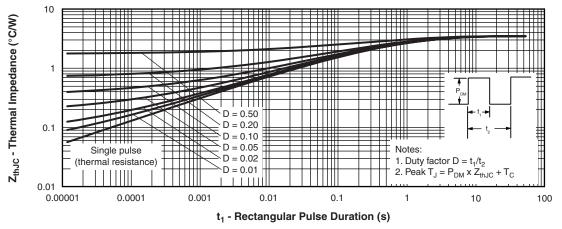
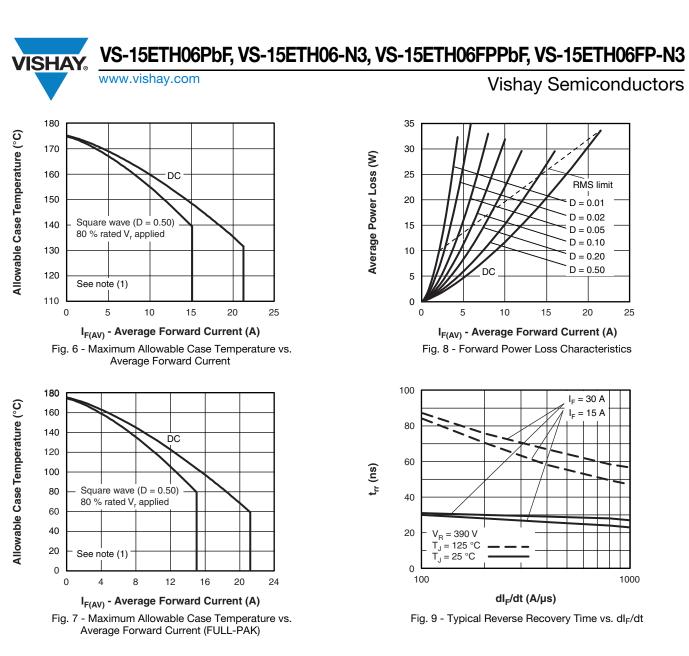



Fig. 5 - Maximum Thermal Impedance Z_{thJC} Characteristics (FULL-PAK)

Downloaded from Elcodis.com electronic components distributor

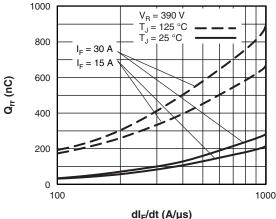


Fig. 10 - Typical Stored Charge vs. dl_F/dt

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

Pd = Forward power loss = $I_{F(AV)} \times V_{FM}$ at ($I_{F(AV)}/D$) (see fig. 8); Pd_{REV} = Inverse power loss = $V_{R1} \times I_R$ (1 - D); I_R at V_{R1} = Rated V_R

Revision: 02-Jan-12

4

Document Number: 94002

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

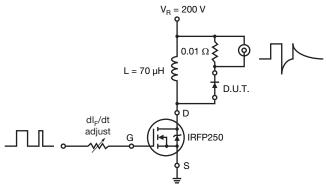
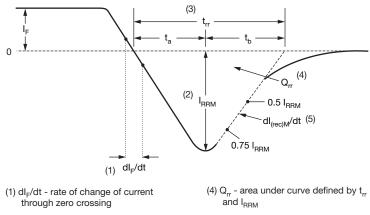
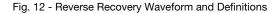



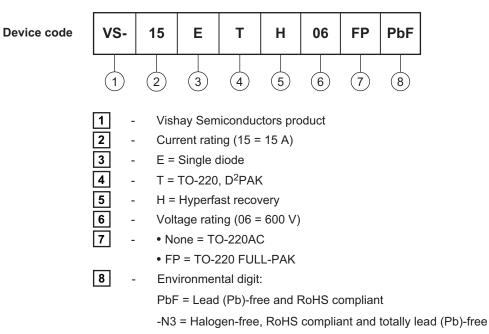
Fig. 11 - Reverse Recovery Parameter Test Circuit



$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(3) t_{rr} - reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current.

(2) I_{RRM} - peak reverse recovery current


(5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

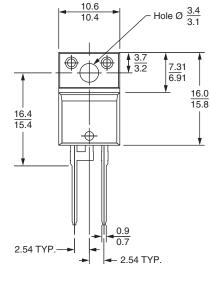
www.vishay.com

Vishay Semiconductors

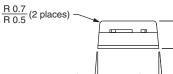
ORDERING INFORMATION TABLE

ORDERING INFORMATION (Example)										
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION							
VS-15ETH06PbF	50	1000	Antistatic plastic tube							
VS-15ETH06-N3	50	1000	Antistatic plastic tube							
VS-15ETH06FPPbF	50	1000	Antistatic plastic tube							
VS-15ETH06FP-N3	50	1000	Antistatic plastic tube							

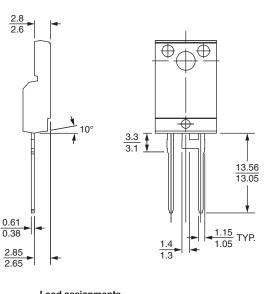
LINKS TO RELATED DOCUMENTS								
Dimensions	TO-220AC	www.vishay.com/doc?95221						
Dimensions	TO-220FP	www.vishay.com/doc?95005						
	TO-220ACPbF	www.vishay.com/doc?95224						
Part marking information	TO-220AC-N3	www.vishay.com/doc?95068						
Part marking information	TO-220FPPbF	www.vishay.com/doc?95009						
	TO-220FP-N3	www.vishay.com/doc?95440						


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Outline Dimensions


Vishay Semiconductors

DIMENSIONS in millimeters



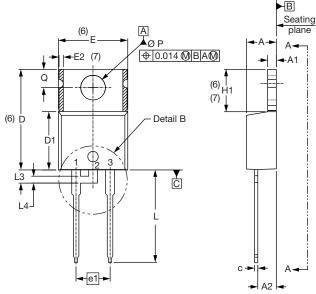
 $\frac{4.8}{4.6}$

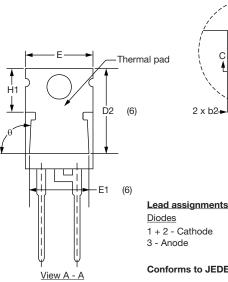
 $5^{\circ} \pm 0.5^{\circ}$

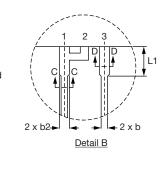
 $5^{\circ} \pm 0.5^{\circ}$

Lead assignments Diodes 1 + 2 - Cathode 3 - Anode

Conforms to JEDEC outline TO-220 FULL-PAK




Vishay Semiconductors


TO-220AC

plane

DIMENSIONS in millimeters and inches

Diodes 1 + 2 - Cathode 3 - Anode

Conforms to JEDEC outline TO-220AC

SYMBOL	MILLIMETERS INCHES NOTES	SYMBOL	MILLIN	IETERS	INCHES		NOTES				
STMBUL	MIN.	MAX.	MIN.	MAX.	NOTES	STWDOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.25	4.65	0.167	0.183		E1	6.86	8.89	0.270	0.350	6
A1	1.14	1.40	0.045	0.055		E2	-	0.76	-	0.030	7
A2	2.56	2.92	0.101	0.115		е	2.41	2.67	0.095	0.105	
b	0.69	1.01	0.027	0.040		e1	4.88	5.28	0.192	0.208	
b1	0.38	0.97	0.015	0.038	4	H1	6.09	6.48	0.240	0.255	6, 7
b2	1.20	1.73	0.047	0.068		L	13.52	14.02	0.532	0.552	
b3	1.14	1.73	0.045	0.068	4	L1	3.32	3.82	0.131	0.150	2
С	0.36	0.61	0.014	0.024		L3	1.78	2.13	0.070	0.084	
c1	0.36	0.56	0.014	0.022	4	L4	0.76	1.27	0.030	0.050	2
D	14.85	15.25	0.585	0.600	3	ØΡ	3.54	3.73	0.139	0.147	
D1	8.38	9.02	0.330	0.355		Q	2.60	3.00	0.102	0.118	
D2	11.68	12.88	0.460	0.507	6	θ	90° t	o 93°	90° t	o 93°	
E	10.11	10.51	0.398	0.414	3, 6						

Notes

⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994

- ⁽²⁾ Lead dimension and finish uncontrolled in L1
- (3) Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- ⁽⁴⁾ Dimension b1, b3 and c1 apply to base metal only
- ⁽⁵⁾ Controlling dimension: inches
- ⁽⁶⁾ Thermal pad contour optional within dimensions E, H1, D2 and E1
- ⁽⁷⁾ Dimension E2 x H1 define a zone where stamping and singulation irregularities are allowed
- ⁽⁸⁾ Outline conforms to JEDEC TO-220, D2 (minimum) where dimensions are derived from the actual package outline

Document Number: 95221 Revision: 07-Mar-11

For technical questions within your region, please contact one of the following: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.