MITSUBISHI<LINEAR IC>

M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

DESCRIPTION

M52739FP is integrated Circuit for LCD Display Monitor.It is controlled IIC BUS and Band Wide is 180MHz. It includes OSD Blanking ,OSD Mixing,Wide Band Amplifier,Main/Sub Contrast Main/Sub Brightness ,and 2 Input routes.

Vcc Voltage is 5V and Flat package is used.

FEATURES

1.Frequency: RGB 180MHz(at -3dB)

then it is the suitable to LCD monitor.

Band Width OSD 80MHz

2.Input

3.Output

RGB Input D range:Max1VP-P positive 2 input routes is changed by IIC BUS RGB OSD 3.5VP-P ___5.0VP-P(positive) OSD BLK 3.5VP-P ___5.0VP-P(positive)

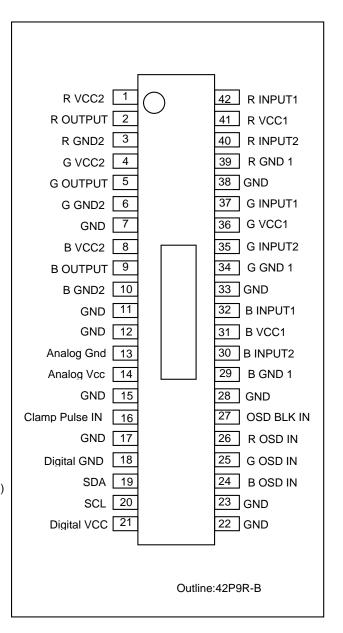
RGB 2.2VP-P (Max) OSD 2.0VP-P (Max)

4.Contrast : Output dynamic range 0.5 3.0V

It can drive 14pF

5.Brightness: Both of sub and main contrast

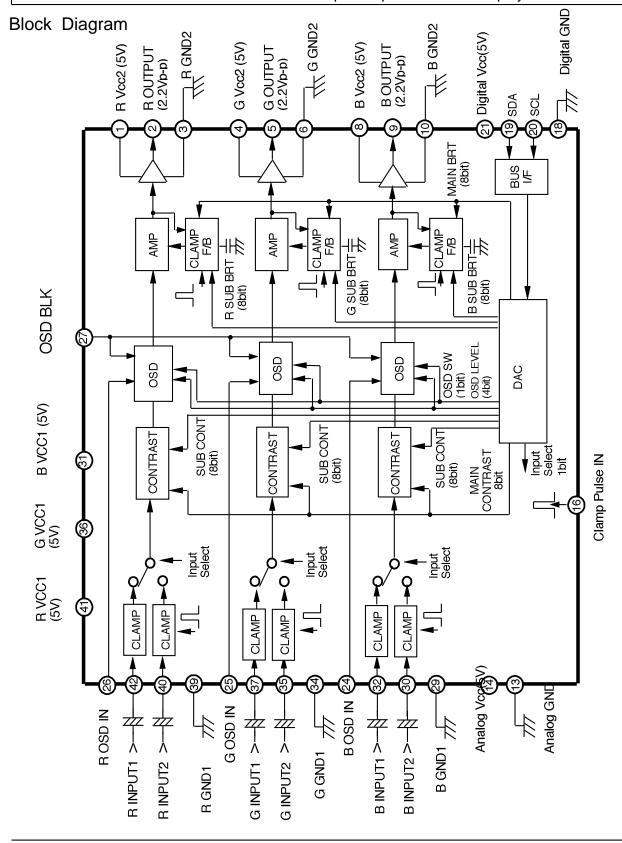
are controlled by IIC Bus(8bit).


-15dB الحي Control Range :-15dB

6.OSD Adjust:

Both of sub and main contrast are controlled by IIC Bus(8bit). Control Range :0.5V _3.0V.

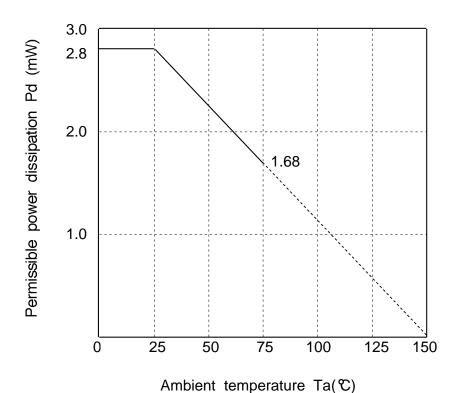
2 Control Ranges (Max1VP-P or Max2VP-P) are able to be changed by IIC Bus.


PIN CONFIGURATION

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range 4.7V ...3V Rated Supply Voltage 5.0V Consumption of electricity 800mW

M52739FP


M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

Absolute Maximum Rating (Ambient temperature: 25℃)

Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	6.0	V
Power dissipation	Pd	1700	mW
Ambient temperature	Topr	-20 <i>∽</i> +75	လ
Storage temperature	Tstg	-40 <u></u> ← +150	°C
Recommended supply	Vopr	5.0	V
voltage range	Vopr'	4.7 _ 5.3	V

Thermal Derating Curve

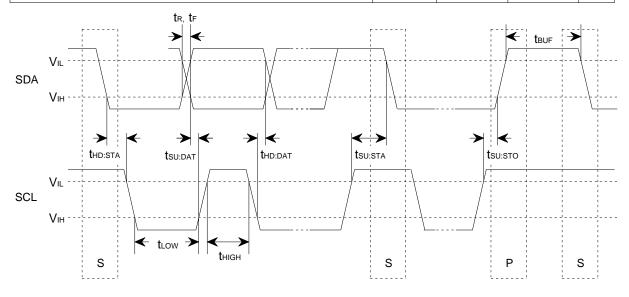
IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

BUS CONTROL TABLE

(1) Slave address:

	D7	D6	D5	D4	D3	D2	D1	R/W	
M52739FP	1	0	0	0	1	0	0	0	=88H

(2) Each function's sub address:


NO	function	bit	sub	b Data Byte										
			add.	D7	D6	D5	D4	D3	D2	D1	D0			
1	Main contract	8	00H	A07	A06	A05	A04	A03	A02	A01	A00			
	Main contrast	8	UUH	0	1	0	0	0	0	0	0			
2	Sub contrast R	8	01H	A17	A16	A15	A14	A13	A12	A11	A10			
	Cub contract it	°	0111	1	0	0	0	0	0	0	0			
3	Sub contrast G	8	02H	A27	A26	A25	A24	A23	A22	A21	A20			
	Sub contrast o	Ů	0211	1	0	0	0	0	0	0	0			
4	Sub contrast B	8	03H	A37	A36	A35	A34	A33	A32	A31	A30			
4	Cub contract B	°	0311	1	0	0	0	0	0	0	0			
5	Main bright	8	04H	A47	A46	A45	A44	A43	A42	A41	A40			
5	Main bright	٥	•	1	0	0	0	0	0	0	0			
6	Sub bright R		05H	A57	A56	A55	A54	A53	A52	A51	A50			
	Sub blight it	8	USH	1	0	0	0	0	0	0	0			
7	Sub bright G	8	06H	A67	A66	A65	A64	A63	A62	A61	A60			
	Sub brigint G	٥	ООП	1	0	0	0	0	0	0	0			
8	Sub bright B		07H	A77	A76	A75	A74	A73	A72	A71	A70			
	Sub blight b	8	U/H	1	0	0	0	0	0	0	0			
9	OSD level	4	08H	-	-	-	-	A83	A82	A81	A80			
9	OSD level	4	ОВП	0	0	0	0	0	0	0	0			
10	INPUT SW		09H	-	-	-	-	-	-	-	A90			
10	INFULOW	JI SW 1		0	0	0	0	0	0	0	0			
44	OSD SW 1		0AH	-	-	-	-	-	-	-	AA0			
11	11 OSD SW		UAIT	0	0	0	0	0	0	0	0			

M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

I²C BUS CONTROL SECTION SDA,SCL CHARACTERISTICS

parameter	symbol	MIN	MAX	unit
min. input LOW voltage.	VIL	-0.5	1.5	V
max. input HIGH voltage.	ViH	3.0	5.5	V
SCL clock frequency.	fscL	0	100	KHz
Time the bus must be free before a new transmission can start.	t BUF	4.7	-	us
Hold time start condition. After this period the first clock pulse is generated.	thd:STA	4.0	-	us
The LOW period of the clock.	t Low	4.7	-	us
The HIGH period of the clock.	t HIGH	4.0	-	us
Srt up time for start condition. (Only relevant for a repeated start condition.)	tsu:sta	4.7	-	us
Hold time DATA.	thd:dat	0	-	us
Set-up time DATA.	tsu:dat	250	-	ns
Rise time of both SDA and SCL lines.	t R	-	1000	ns
Fall time of both SDA and SCL lines.	t⊧	-	300	ns
Set-up time for stop condition.	tsu:sto	4.0	-	us

MITSUBISHI

IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.

If SW connect is not designated RGB Input SW : $SW(30,35,40) = a(b) \ SW(32,37,42) = b \ (a), SW(2,5,9,16,19,20,23,24,25,26,27) = a$

Vcc=5V Ta=25°C

	(00,00,10)		(02,0)	, ,						BUS CTL (H)										Standard						
No	parameter	Symbol	Test Point	RGB Input Signal	SW Co Supply	nnect Voltage	00H Main cont	01H Sub cont 1	02H Sub cont 2	03H Sub cont 3	04H Main brt	05H Sub brt1	06H Sub brt2	07H Sub brt3	08H OSD Adj	09I INF SW	OTU	AH SD W	MIN	TYP	MAX	Unit				
1	Circuit current1	Icc1	la	_		RGBInput SW =a(ALL)		A6H 166	A6H 166	A6H 166	00H 0	00H 0	00H 0	00H 0	00H 0	-	-	-	_	100	130	mA				
2	Output dynamic range	Vomax	OUT	SG2		_		_		-		\downarrow	V	\downarrow	Variable	Variable	Variable	Variable					2.2	_	_	Vp-p
3	Maximum input1	Vimax1	IN OUT	SG2 Amplitude Variable		•		•		7FH 127	7FH 127	7FH 127	40H 64	7FH 127	7FH 127	7FH 127					1.0	_	_	Vp-p		
4	Maximum input2	Vimax2	IN OUT	SG2 Amplitude Variable	SW(30,3 SW(32.3		\downarrow	\downarrow	\downarrow	\downarrow									1.0	1	_	Vp-p				
5	Maximum gain	Gv	OUT	SG1	-	_	FFH 255	FFH 255	FFH 255	FFH 255									12.0	15.0	18.0	dB				
6	Relative maximum gain	Gv	_	_			-	_	_	_									0.8	1.0	1.2	_				
7	Main contrast control characteristics 1	VC1	OUT	SG1			C8H 200	7FH 127	7FH 127	7FH 127									7.1	8.6	10.1	dB				
8	Main contrast control characteristics 2	VC2	OUT	SG1			64H 100												2.7	4.2	5.7	dB				
9	Main contrast control characteristics 3	VC3	OUT	SG1			14H 20	V	V	V									0.2	0.4	0.6	Vp-p				
10	Sub contrast control characteristics 1	VSC1	OUT	SG1			7FH 127	C8H 200	C8H 200	C8H 200									7.1	8.6	10.1	dB				
11	Sub contrast control characteristics 2	VSC2	OUT	SG1				64H 100	64H 100	64H 100									2.7	4.2	5.7	dB				
12	Sub contrast control characteristics 3	VSC3	OUT	SG1				14H 20	14H 20	14H 20									0.2	0.4	0.6	Vp-p				
13	Main/sub contrast control characteristics	VMSC	OUT	SG1		\	A6H 166	A6H 166	A6H 166	A6H 166	\downarrow								1.7	2.0	2.3	Vp-p				
14	Main brightness control characteristics 1	VB1	OUT	_	RGBIr =a(AL	nput SW L)	A6H 166	A6H 166	A6H 166	A6H 166	FFH 255								2.2	2.5	2.8	٧				
15	Main brightness control characteristics 2	VB2	OUT	_							7FH 127								1.3	1.5	1.7	٧				
16	Main brightness control characteristics 3	VB3	OUT	_							00H 0		$ \downarrow $	 					0.3	0.5	0.7	V				
17	Sub brightness control characteristics 1	VSB1	OUT	_							7FH 127	FFH 255	FFH 255	FFH 255					1.8	2.0	2.2	V				
18	Sub brightness control characteristics 2	VSB2	OUT	_								7FH 127	7FH 127	7FH 127					1.3	1.5	1.7	V				
19	Sub brightness control characteristics 3	VSB3	OUT	_		•	Variable				V	00H 0	00H 0	00H 0	$ \downarrow$,	V	0.8	1.0	1.2	V				
20	Frequency characteristics 1 (50MHz-2Vpp)	FC1	OUT	SG3	_		A6H 166				40H 64	7FH 127	7FH 127	7FH 127	00H 0	_	- -	-	-3.0	0	3.0	dB				
21	Frequency relative characteristics 1 (180MHz-2Vpp)	ΔFC1	_	_															-1.0	0	1.0	dB				
22	Frequency characteristics 2 (50MHz-2Vpp)	FC2	OUT	SG3															-3.0	3.0	5.0	dB				
23	Frequency relative characteristics 2 (50MHz-2Vpp)	ΔFC2	_	_			V												-1.0	0	1.0	dB				
24	Frequency characteristics 3 (180MHz-1Vpp)	FC3	OUT	SG3			37H 55												-1.0	0	1.0	dB				
25	Frequency relative characteristics 3 (180MHz-1Vpp)	ΔFC3	_	_		,	V												-1.0	0	1.0	dB				
26	Frequency characteristics 4 (180MHz-2Vpp)	FC4	OUT	SG3	SW(2,5	,9)=b	A6H 166												-3.0	3.0	5.0	dB				
27	Frequency relative characteristics 4 (180MHz-2Vpp)	ΔFC4		_	_												/		-1.0	0	1.0	dB				
28	Crosstalk 1 input1 - 2 50MHz-1	INCT1	OUT(2) OUT(5) OUT(9)	SG3	SW(37)=b.	Other SW=a Other SW=a Other SW=a										00			_	-50	-40	dB				
29	Crosstalk 1' input1 - 2 50MHz-1	INCT1'	OUT(2) OUT(5) OUT(9)	SG3		\													_	-30	-20	dB				
30	Crosstalk 2 input1 - 2 50MHz-2	INCT2	OUT(2) OUT(5) OUT(9)	SG3	SW(35)=b	Other SW=2, Other SW=2, Other SW=2	a									01			_	-50	-40	dB				
31	Crosstalk 2' input1 - 2 50MHz-2	INCT2'	OUT(2) OUT(5) OUT(9)	SG3		\		V	V	\	V	 			$ \downarrow$	١	, ,	\downarrow	_	-30	-20	dB				
_																		_								

IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.

If SW connect is not designated RGB Input SW : $SW(30,35,40) = a(b) \ SW(32,37,42) = b \ (a), SW(2,5,9,16,19,20,23,24,25,26,27) = a$

Vcc=5V Ta=25°C

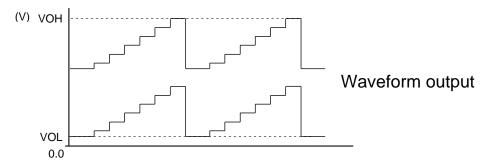
			(02,0.								CTL	(H))						Т	8	Standard	l	
No	parameter	Symbol	Test Point	RGB Input Signal	SW Connect Supply Voltage	00H Main cont	01H Sub cont 1	02H Sub cont 2	03F Sub con 3	N	Main ort	05H Sub brt1	06H Sub brt2	07l- Sul brt3	ь С	BH SD dj	09H INPU SW	OA OS SW	SD	MIN	TYP	MAX	Unit
32	Crosstalk 1 between RGB ch 50MHz-1	CHCT1	OUT	SG3	SW(42)=b,OtherSW=a	A6H 166	A6H 166	A6H 166			0H 64	7FH 127	7FH 127	7FI 12		0H 0	_	-	-	-	-25	-20	dB
33	Crosstalk 1' between RGB ch 180MHz-1	CHCT1'	OUT	SG3	\															-	-15	-10	dB
34	Crosstalk 2 between RGB ch 50MHz-2	CHCT2	OUT	SG3	SW(37)=b,OtherSW=a															-	-25	-20	dB
35	Crosstalk 2' between RGB ch 180MHz-2	CHCT2'	OUT	SG3	V															-	-15	-10	dB
36	Crosstalk 3 between RGB ch 50MHz-3	СНСТЗ	OUT	SG3	SW(32)=b,OtherSW=a															_	-25	-20	dB
37	Crosstalk 3' between RGB ch 50MHz-3	СНСТ3'	OUT	SG3	↓															-	-15	-10	dB
38	Pulse characteristics Tr1	Tr1	OUT	SG1	_															-	1.7	_	nS
39	Relative pulse characteristics Tr1	ΔTr1	ı	_																-0.8	0.0	-0.8	nS
40	Pulse characteristics Tr2	Tf2	OUT	SG1																-	1.7	_	nS
41	Relative pulse characteristics Tr2	ΔTf2	_	_																-0.8	0.0	-0.8	nS
42	Clamp pulse threshold voltage	VthCP	OUT	SG1																1.5	2.0	2.5	٧
43	Clamp pulse minimum width	WCP	OUT	SG1																0.2	0.5	_	uS
44	OSD input threshold voltage	PDCH	OUT	SG1																_	0.0	_	٧
45	OSD BLK input threshold voltage	PDCL	OUT	SG1		V	\downarrow	↓	↓	,	\bigvee	\downarrow	V	V	٠ ,	<u> </u>			,	-	0.0	_	V
46	OSD Pulse characteristics Tr	OTr1	OUT	-	SW(24,25, 26,27)=b	00H 0	00H 0	00H 0	001		40H 64	7FH 127	7FH 127	7F 12		15		00		_	3.0	6.0	ns
47	OSD Pulse characteristics Tf	OTf2	_	_		$ \downarrow$	$ \downarrow$	↓	1	1										_	3.0	6.0	ns
48	OSD adjust control characteristics 1	Oaj1	OUT	-		A6H 166	A6H 166	A6H 166								¥		\ \	,	1.7	2.0	2.3	Vp-p
49	OSD adjust control relative characteristics 1	∆Oaj1	I	-												_		-	-	0.8	1.0	1.2	_
50	OSD adjust control characteristics 2	Oaj2	OUT	_											C	1H 1		00		0.7	1.0	1.3	Vp-p
51	OSD adjust control relative characteristics 2	ΔOaj2	ı	-	\											_		-	-	0.8	1.0	1.2	_
52	OSD adjust control characteristics 3	Oaj3	OUT	-	SW(24,25,26,27)=b											FH 15		01 1		0.7	1.0	1.3	Vp-p
53	OSD adjust control relative characteristics 3	∆Oaj3	-	_												-		-	-	0.8	1.0	1.2	-
54	OSD adjust control characteristics 4	Oaj4	OUT	_											C	1H 1		01	1H 1	0.3	0.5	0.7	Vp-p
55	OSD adjust control relative characteristics 4	∆Oaj4	-	_												_		_		0.8	1.0	1.2	_
56	OSD BLK characteristics	OBLK	OUT	-												0H 0				0.0	0.0	0.2	Vp-p
57	OSD BLK relative characteristics	ΔOBLK	_	-												_				-0.15	0.0	0.15	_
58	OSD input threshold voltage	VthOSD	OUT	-	 															2.0	2.5	3.0	V
59	OSD BLK input threshold voltage	VthBLK	OUT	SG1	SW(27)=b	V	¥	V	↓	١,	V	¥	V	V	١,	V	¥	1	/	2.0	2.5	3.0	V

IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.

If SW connect is not designated RGB Input SW : SW(30,35,40)=a(b) SW(32,37,42)=b (a),SW(2,5,9,16,19,20,23,24,25,26,27)= a

Vcc=5V Ta=25°C

	,	· /	· ·	. ,	BUS CTL (H)									1							
No	parameter	Symbol	Test Point	RGB Input Signal	SW Connect Supply Voltage	00H Main cont	01H Sub cont 1	Sub	03H Sub cont 3	04H Main brt	05H	06H Sub brt2	07H Sub brt3	08H OSD Adj	09I INP SW	UTI	DAH DSD SW	MIN	Standard TYP	MAX	Unit
60	Pin16 Input Current H	I16H	I 16	_	SW(16)=b V16=5V	-	-	-	-	-	-	-	-	-	-		-	_	-0.7	_	uA
61	Pin16 Input Current L	I16L	I 16	_	SW(16)=b V16=0V													_	0.7	_	mA
62	Pin19 Input Current H	I 19H	I 19	_	SW(19)=b V19=5V													-	0	_	nA
63	Pin19 Input Current L	I19L	I 19	_	SW(19)=b V19=0V													_	40	_	uA
64	Pin20 Input Current H	I20H	I 20	-	SW(20)=b V20=5V													_	0	_	nA
65	Pin20 Input Current L	I20L	I 20	_	SW(20)=b V20=0V													_	0.7	_	uA
66	Pin24 25 26 Input Current H	losdh	24 25 26	_	SW(24,25,26)=b VOSD=5V													-	-1.3	_	mA
67	Pin24 25 26 Input Current L	Iosdl	24 25 26 24 25 26	_	SW(24,25,26)=b VOSD=0V													_	1.5	_	mA
68	Pin27 Input Current H	I27H	127	_	SW(27)=b V27=5V													_	-1.3	_	mA
69	Pin27 Input Current L	I ₂₇ L	l ₂₇	_	SW(27)=b V27=0V	V	V	V	V	V	V	V	V	V	Τ,	,	V	-	1.5	_	mA
	,															T					
																1					
																+					
																+					
									-							4					
																1					
									\vdash							1					
									\vdash							\dagger					
															\dagger	\dagger					
																+					
									-						+	+					
																					<u> </u>


MITSUBISHI<LINEAR IC>

TENTATIVE

M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

- Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IA.
- 2) Decrease Main Brt or Sub Brt gradually, and measure the voltage when the bottom of waveform output is distorted. The voltage is called VOL. Next, increase V30 gradually, and measure the voltage when the top of waveform output is distorted. The voltage is called VOH.Voltagr Vomax is calculated by the equation below: Vomax = VOH-VOL

- 3) Increase the input signal(SG2) at Input1 amplitude gradually, starting from 700mVp-p. Measure the amplitude of the input signal when the output signal starts becoming distorted.
- Increase the input signal(SG2) at Input2 amplitude gradually, starting from 700mVp-p. Measure the amplitude of the input signal when the output signal starts becoming distorted.
- 5) Input SG1, and read the amplitude output at OUT(2,5,9). The amplitude is called VOUT(2.5.9). Maximum gain GV is calculated by the equation below:

$$\triangle GV = 20 \text{ LOG } \frac{\text{VOUT}}{0.7}$$
 (dB)

6) Relative maximum gain &V is calculated by the equation below:

$$\triangle GV = VOUT(2) / VOUT(5), VOUT(5) / VOUT(9), VOUT(9) / VOUT(2)$$

Measuring the amplitude output at OUT(2,5,9). The measured value is called VOUT(2,5,9).

VC1=20 LOG
$$\frac{\text{VOUT}}{0.7}$$
 (dB)

- 8) Measuring condition and procedure are the same as described in Note7.
- 9) Measuring condition and procedure are the same as described in Note7.
- 10) Measuring condition and procedure are the same as described in Note7.
- 11) Measuring condition and procedure are the same as described in Note7.
- 12) Measuring condition and procedure are the same as described in Note7.
- 13) Measuring condition and procedure are the same as described in Note7.

MITSUBISHI<LINEAR IC>

TENTATIVE

M52739FP

IIC BUS controlled 3channel video pre-amplifier for LCD display monitor.

- 14) Measure the DC voltage output at OUT(2,5,9). The measured value is called VB1.
- 15) Measuring condition and procedure are the same as described in Note14.
- 16) Measuring condition and procedure are the same as described in Note14.
- 17) Measuring condition and procedure are the same as described in Note14.
- 18) Measuring condition and procedure are the same as described in Note14.
- 19) Measuring condition and procedure are the same as described in Note14.
- 20) First, SG3 to 1MHz is as input signal. Control the main contrast in order that the amplitude of sine wave output is 2.0Vp-p.Control the brightness in order that the bottom of sine wave output is 1.0V.By the same way, measure the output amplitude when SG3 to 50MHz is as input signal. The measured value is called VOUT(2,5,9). Frequency characteristics FC1(2,5,9) is calculated by the equation below:

FC1=20 LOG VOUT Vp-p output amplitude when inputed SG3(1MHz) : 4.0Vp-p (dB)

- 21) Relative characteristics ΔFC1 is calculated by the difference in the output between the channels.
- 22) Measuring condition and procedure are the same as described in Note33, expect SG3 to
- 23) Relative characteristics Δ FC2 is calculated by the difference in the output between the channels.
- 24) SG3 to 1MHz is as input signal. Control the main contrast in order that the amplitude of sine wave output is 1.0Vp-p.By the same way, measure the output amplitude when SG3 to 180MHz is as input signal.
- 25) Relative characteristics ΔFC3 is calculated by the difference in the output between the channels.
- 26) Change OUT SW from a to b .Measuring condition and procedure are the same as described in Note33
- 27) Relative characteristics Δ FC4 is calculated by the difference in the output between the channels.

MITSUBISHI<LINEAR IC>

TENTATIVE

M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

28) Input SG3 (50MHz) to pin42 only, set Input SW of IIC BUS to 0 and then measure the waveform amplitude output at OUT(2). The measured value is called VOUT(2). On equal terms set Input SW of IIC BUS to 1. And then measure the waveform amplitude output at OUT(2)'. Crosstalk INCT1 is calculated by the equation below:

INCT1= 20 LOG
$$\frac{\text{VOUT(2)'}}{\text{VOUT(2)}}$$
 (dB)

Similarly measure the waveform amplitude output at OUT(5) when signal input only Pin37 and OUT(9)when signal input only Pin32 and calculate crosstalk

- 29) Measuring condition and procedure are the same as described in Note28, expect SG3 to 180MHz.
- 30) Input SG3 (50MHz) to pin40 only, set Input SW of IIC BUS to 1 and then measure the waveform amplitude output at OUT(2). The measured value is called VOUT(2). On equal terms set Input SW of IIC BUS to 0. And then measure the waveform amplitude output at OUT(2)'. Crosstalk INCT2 is calculated by the equation below:

INCT2= 20 LOG
$$\frac{\text{VOUT(2)'}}{\text{VOUT(2)}}$$
 (dB)

Similarly measure the waveform amplitude output at OUT(5) when signal input only Pin35 and OUT(9)when signal input only Pin30 and calculate crosstalk.

- 31) Measuring condition and procedure are the same as described in Note30, expect SG3 to 180MHz.
- 32) Input SG3 (50MHz) to pin42 only, and then measure the waveform amplitude output at OUT(2,5,9). The measured value is called VOUT(2,5,9). Crosstalk CHCT1 is calculated by the equation below:

CHCT1= 20 LOG
$$\frac{\text{VOUT}(5,9)}{\text{VOUT}(2)}$$
 (dB)

- 33) Measuring condition and procedure are the same as described in Note32, expect SG3 to 180MHz.
- 34) Input SG3 (50MHz) to pin37 only, and then measure the waveform amplitude output at OUT(2,5,9). The measured value is called VOUT(2,5,9). Crosstalk CHCT2 is calculated by the equation below:

CHCT2= 20 LOG
$$\frac{\text{VOUT}(2,9)}{\text{VOUT}(5)}$$
 (dB)

- 35) Measuring condition and procedure are the same as described in Note34, expect SG3 to 180MHz.
- 36) Input SG3 (50MHz) to pin32 only, and then measure the waveform amplitude output at OUT(2,5,9). The measured value is called VOUT(2,5,9). Crosstalk CHCT3 is calculated by the equation below:

CHCT3=
$$20 LOG \frac{VOUT(2,5)}{VOUT(9)}$$
 (dB)

37) Measuring condition and procedure are the same as described in Note36.expect SG3 to 180MHz.

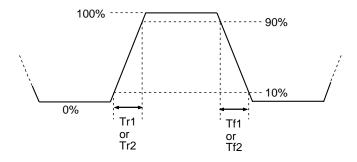
M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

38) Control the contrast in order that the amplitude of output signal is 2.0Vp-p. Control the brightness in order that the Black level of output signal is 1.0V. Measure the time needed for the input pulse to rise from 10 % to 90 % (Tr1) and for the output pulse to rise from 10 % to 90 % (Tr2) with an active prove. Pulse characteristics TR is calculated by the equations below:

$$TR = \sqrt{(Tr2)^2 - (Tr1)^2}$$
 (nsec)

39) Relative Pulse characteristics1 <u>⊼</u>r is calculated by the equation below:


$$\Lambda^{Tr} = VOUT(2) - VOUT(5) \cdot VOUT(5) - VOUT(9) \cdot VOUT(9) - VOUT(2)$$

40) Measure the time needed for the input pulseto fall from 90 % to 10 % (Tf1) and for the output pulse to fall from 90 % to 10 % (Tf2) with an active prove. Pulse characteristics TF is calculated by the equations below:

TF =
$$\sqrt{(Tf2)^2 (Tf1)^2}$$
 (nsec)

41) Relative Pulse characteristics2 / If is calculated by the equation below:

$$\wedge$$
 Tf = VOUT(2) - VOUT(5) . VOUT(5) - VOUT(9) . VOUT(9) - VOUT(2)

- 42) Turn down the SG4 input level gradually from 5.0Vp-p, monitoring the waveform output. Measure the top level of input pulse when the output pedestal voltage turn decrease with unstable.
- 43) Decrease the SG4 pulse width gradually from 0.5us, monitoring the output. Measure the SG4 pulse width (a point of 1.5V) when the output pedestal voltage turn decrease with unstable.
- Measure the pedestal voltage at 25 C. The measured value is called PDC1. Measure the pedestal voltage at temperature of 20 C. The measured value is called PDC2. Pedestal voltage temperature characteristics 1 is calculated by the equation below:
- 45) Measure the pedestal voltage at temperature of 75 C. The measured value is called PDC3. Pedestal voltage temperature characteristics 2 is calculated by the equation below:

MITSUBISHI<LINEAR IC>

M52739FP

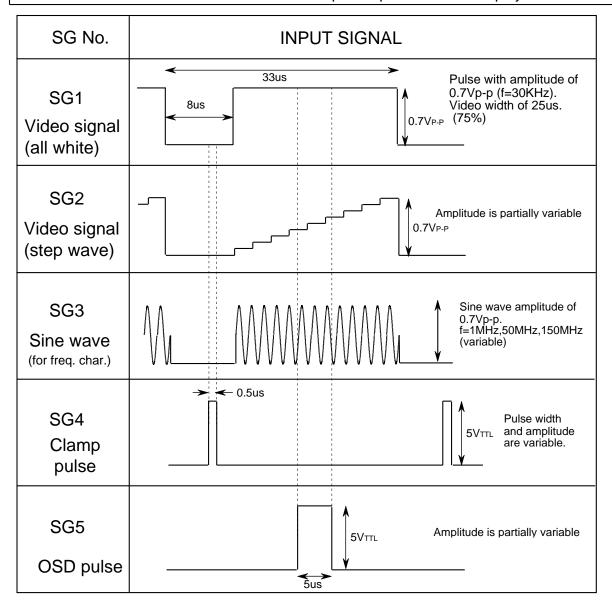
IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

- 46) Measure the time needed for the output pulse to rise from 10% to 90% (OTR) with an active prove.
- 47) Measure the time needed for the output pulse to fall from 90% to 10% (OTF) with an active prove.
- 48) Measure the amplitude output at OUT(2,5,9). The measured value is called VOUT(2,5,9), and is treated as Oai1.
- 49) Relative characteristics ∆ aj1 is calculated by the equation below:

 Λ Oai1 = VOUT(2) / VOUT(5), VOUT(5) / VOUT(9), VOUT(9) / VOUT(2)

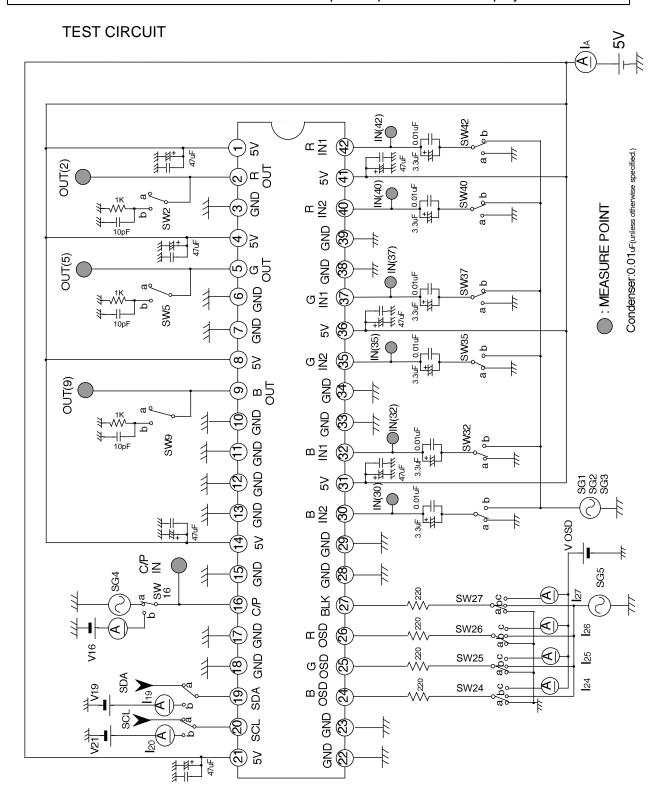
- 50) Measuring condition and procedure are the same as described in Note48.
- 51) Measuring condition and procedure are the same as described in Note49.
- 52) Measuring condition and procedure are the same as described in Note48.
- 53) Measuring condition and procedure are the same as described in Note49.
- 54) Measuring condition and procedure are the same as described in Note48.
- 55) Measuring condition and procedure are the same as described in Note49.
- 56) Measuring the amplitude output at OUT(2,5,9). The measured value is called OBLK.
- 57) Relative OSD BLK characteristics \(\Delta \text{DBLK} \) is calculated by the equation below:

\triangle OBLK = VOUT(2) / VOUT(5), VOUT(5) / VOUT(9), VOUT(9) / VOUT(2)

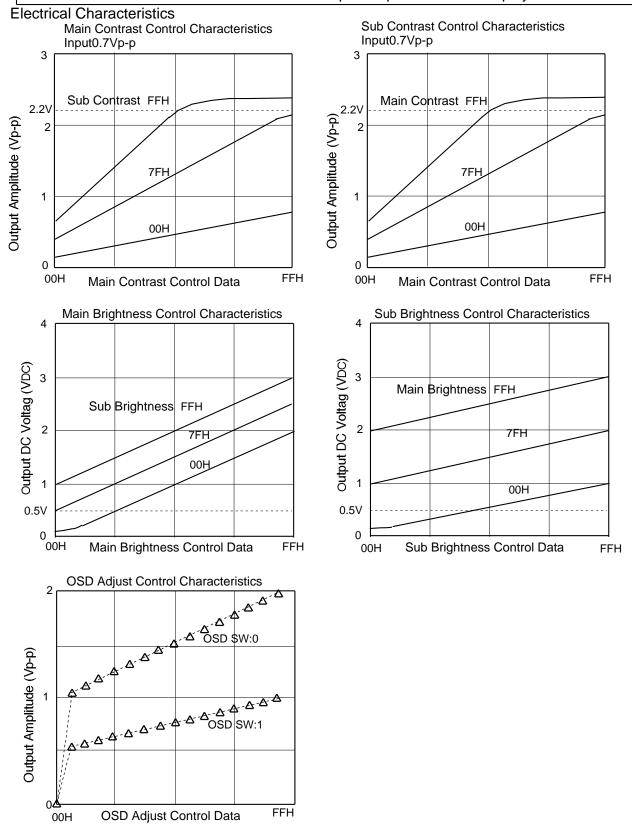

- 58) Reduce the SG5 input level gradually, monitoring output. Measure the SG5 level when the output reaches 0V. The measured value is called VthOSD.
- 59) Confirm that output signal is being blanked by the SG5 at the time.

 Monitoring to output signal, decreasing the level of SG5. Measure the top level of SG6 when the blanking period is disappeared. The measured value is called VthBLK.
- 60) Supply 5V to V16, and then measure input current into Pin16
- 61) Supply 0V to V16, and then measure input current into Pin16
- 62) Supply 5V to V19, and then measure input current into Pin19
- 63) Supply 0V to V19, and then measure input current into Pin19
- 64) Supply 5V to V20, and then measure input current into Pin20
- 65) Supply 0V to V20, and then measure input current into Pin20
- 66) Supply 5V to V(24,25,26) and then measure input current into Pin(24,25,26)
- 67) Supply 0V to V(24,25,26) and then measure input current into Pin(24,25,26)
- 68) Supply 5V to V27, and then measure input current into Pin27
- 69) Supply 0V to V27, and then measure input current into Pin27

MITSUBISHI<LINEAR IC>


M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.


fH=30KHz

M52739FP

MITSUBISHI<LINEAR IC>

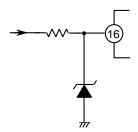
M52739FP

MITSUBISHI<LINEAR IC>

M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

Application Method

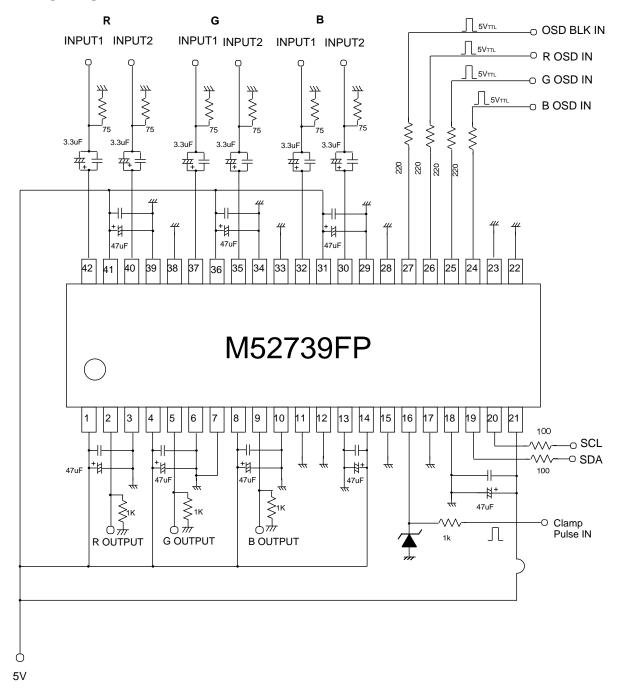

CLAMP PULSE INPUT

Clamp pulse width is recommended above 15 KHz, 1.0 usec above 30 KHz, 0.5 usec

above 64 KHz, 0.3 usec

The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connected to external terminal, it is very easy affected by large surge.

Therefore, the Fig. shown right is recommended.



Notice of application

- 1.Recommended pedestal voltage of IC output signal is 1V.
- 2.This IC has 2 Input routes. When the 2 Input signal input at different timing, clamp pulses which synchronize with selected signals is needed. In this case, it is necessary to change clamp pulses by the outside circuit.

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

APPLICATION EXAMPLE

Condenser: 0.01 uF (unless otherwise specified.)

MITSUBISHI<LINEAR IC>

M52739FP

IIC BUS controled 3channel video pre-amplifier for LCD display monitor.

Terminal Description

	Name	DC Voltage (V)	peripheral Circuit	Remark
1	R VCC 2			
4	G VCC 2	5		
8	B VCC2			
2	OUTPUT (R)			
5	OUTPUT (G)		2	
9	OUTPUT (B)		20mA	
3	R GND 2			
6	G GND 2	GND		
10	B GND 2			
13	Analog Gnd	GND		
14	Analog Vcc	5		
16	Clamp Pulse In		16 1K 2.0V 7 0.2mA	more than 200nSec

	Name	DC Voltage (V)	peripheral Circuit	Remark
18	Digital GND	GND		
19	SDA	_	19 3V	SDA for II C (Serial data line) VTH=2.3V
20	SCL	_	50K ¥ 3V	SCL for II C (Serial clock line) VTH=2.3V
21	Digital Vcc	5V		
24	B OSD IN			Input pulses 3.5 GND
25	G OSD IN	_	24	1.0V & GND
26	R OSD IN		†2.5V	

No.	Name	DC Voltage (V)	peripheral Circuit	Remark
27	OSD BLK IN	_	27 1k 330 2.5V 1.5mA	Input pulses 3.5 \sim 5V 1.0V \sim GND Connected to GND if not used.
29 34 39	B GND 1 G GND 1 R GND 1	GND		
30 32 35 37 40 42	B INPUT 2 B INPUT 1 G INPUT 2 G INPUT 1 R INPUT 2 R INPUT 1	2.1 V	2K 2K 2K 2 2K 2.0V CP 0.3mA 77 0 (off) 3.5V(on)	Clamped to about 2.1 V due to clamp pulses from pin16. Input at low impedance.
31 36 41	R VCC 1 G VCC 1 B VCC 1	5		
7 11 12 15 17 2 2 2 38 33 38	NC			Connect GND for radiation of heat