DESCRIPTION

The M52734SP is a semiconductor integrated circuit amplifies video signals, having a 3-channel amplifier with a band width of 130 MHz . The circuit also features the OSD mixing function.
The circuit is most useful with high resolution displays that have OSD, and its function are available for each channel, including OSD blanking, OSD mixing, wide-band amplification, contrast control (main and sub), and brightness control.

FEATURES

- To adjust contrast, two types of controls are provided, main and sub. With the main control, the contrast of the 3-channels can be changed simultaneously. Sub controls are used to adjust the contrast of a given channel individually. The control terminals can be controlled by applying a voltage of 0 to 5 V .
- The DC power remains stable at the IC output terminal because a feedback circuit is built in.

APPLICATION

Display monitor

RECOMMENDED OPERATING CONDITION

Supply voltage range. \qquad .. 11.5 to 12.5 V
Rated supply voltage \qquad 12.0V

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Ratings	Unit
Vcc	Supply voltage	13.0	V
Pd	Power dissipation	2016	mW
Topr	Ambient temperature	-20 to +85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature	-40 to +150	${ }^{\circ} \mathrm{C}$
Vopr	Recommended supply voltage	12.0	V
Vopr'	Recommended supply voltage range	11.5 to 12.5	V
Surge	Electrostatic discharge	± 200	V

ELECTRICAL CHARACTERISTICS ($\mathrm{VcC}=12 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions										Limits			Unit
		Test point (s)	Input			External power supply (V)				Pulse input					
			$\begin{gathered} \text { SW13 } \\ \text { R-ch } \end{gathered}$	$\begin{aligned} & \text { SW8 } \\ & \text { G-ch } \end{aligned}$	$\begin{aligned} & \text { SW3 } \\ & \text { B-ch } \end{aligned}$	V4	V17	V19	V36	SW18	$\begin{gathered} \hline \text { SW1 } \\ 5,10, \\ 15 \end{gathered}$	Min.	Typ.	Max.	
ICC	Circuit current	A	-	-	-	5	5	5	2	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	70	100	140	mA
Vomax	Output dynamic range	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \text { b } \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \text { b } \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	5	5	Variable	5	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	5.8	6.8	9.0	VP-P
Vimax	Maximum input	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 6 \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	5	2.5	1	5	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	1	1.8	-	VP-P
Gv	Maximum gain	$\begin{array}{\|l} \hline \text { T.P. } 35 \\ \text { T.P. } 30 \\ \text { T.P. } 25 \end{array}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 6 \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	5	5	2	5	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	15	17	20	dB
$\Delta \mathrm{Gv}$	Relative maximum gain		Relative to measured values above									0.8	1	1.2	-
VCR1	Contrast control characteristics (typical)	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 6 \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	5	4	2	5	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	14	15.5	17	dB
$\Delta \mathrm{V}$ CR1	Contrast control relative characteristics (typical)		Relative to measured values above									0.8	1	1.2	-
VCR2	Contrast control characteristics (minimum)	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	5	1	2	5	$\begin{gathered} \text { b } \\ \text { SG5 } \end{gathered}$	-	0.3	0.6	0.9	VP-P
$\Delta \mathrm{VCR} 2$	Contrast control relative characteristics (minimum)		Relative to measured values above									0.8	1	1.2	-
Vscr1	Sub contrast control characteristics (typical)	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \text { b } \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	4	5	2	5	$\begin{gathered} \text { b } \\ \text { SG5 } \end{gathered}$	-	14	15.5	17	dB
$\Delta \mathrm{V}$ SCR1	Sub contrast control relative characteristics (typical)		Relative to measured values above									0.8	1	1.2	-
VSCR2	Sub contrast control characteristics (minimum)	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \text { b } \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	1	5	2	5	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	0.5	0.9	1.3	VP-P
$\Delta \mathrm{V}$ SCR2	Sub contrast control relative characteristics (minimum)		Relative to measured values above									0.8	1	1.2	-
Vscr3	Contrast/sub contrast control characteristics (typical)	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	3	3	2	5	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	0.8	1.5	2.2	VP-P
$\Delta \mathrm{V}$ SCR3	Contrast/sub contrast control relative characteristics (typical)		Relative to measured values above									0.8	1	1.2	-
VB1	Brightness control characteristics (maximum)	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	a	a	a	5	5	4	5	$\begin{gathered} \text { b } \\ \text { SG5 } \end{gathered}$	-	3.0	3.6	4.2	V
$\Delta \mathrm{VB1}$	Brightness control relative characteristics (maximum)		Relative to measured values above									-0.3	0	0.3	V

ELECTRICAL CHARACTERISTICS (cont.)

Symbol	Parameter	Test conditions										Limits			Unit
		Test point (s)	Input			External power supply (V)				Pulse input					
			SW13 R-ch	$\begin{aligned} & \text { SW8 } \\ & \text { G-ch } \end{aligned}$	$\begin{aligned} & \text { SW3 } \\ & \text { B-ch } \end{aligned}$	V4	V17	V19	V36	SW18	$\begin{array}{c\|} \hline \text { SW1 } \\ 5,10, \\ 15 \end{array}$	Min.	Typ.	Max.	
VB2	Brightness control characteristics (typical)	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	-	a	a	5	5	2.5	5	$\begin{gathered} \text { b } \\ \text { SG5 } \end{gathered}$	a	1.7	2.3	2.9	V
$\Delta \mathrm{V}_{\text {B2 }}$	Brightness control relative characteristics (typical)		Relative to measured values above									-0.3	0	0.3	V
Vв3	Brightness control characteristics (minimum)	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	-	a	-	5	5	1	5	$\begin{gathered} \text { b } \\ \text { SG5 } \end{gathered}$	a	0.5	0.9	1.3	V
$\Delta \mathrm{V}_{\text {B3 }}$	Brightness control relative characteristics (minimum)		Relative to measured values above									-0.3	0	0.3	V
FC1	Frequency characteristics 1 ($\mathrm{f}=50 \mathrm{MHz}$;maximum)	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 2 \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 2 \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 2 \end{gathered}$	5	2.5	VT	-	-	a	-2.5	-1	3	dB
$\Delta \mathrm{FC} 1$	Frequency relative characteristics 1 ($f=50 \mathrm{MHz}$;maximum)		Relative to measured values above									-1	0	1	dB
${ }^{\text {FC1 }}{ }^{\prime}$	Frequency characteristics 1 ($\mathrm{f}=130 \mathrm{MHz}$;maximum)	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \text { b } \\ \text { SG3 } \end{gathered}$	$\begin{gathered} \text { b } \\ \text { SG3 } \end{gathered}$	$\begin{array}{\|c\|} \text { b } \\ \text { SG3 } \end{array}$	5	2.5	VT	-	a	a	-3	-2	3	dB
$\Delta \mathrm{FC1}{ }^{\prime}$	Frequency relative characteristics 1 ($\mathfrak{f}=130 \mathrm{MHz}$;maximum)		Relative to measured values above									-1	0	1	dB
Fc2	Frequency characteristics 2 (f=50MHz; maximum)	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 2 \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 2 \end{gathered}$	$\begin{array}{\|c\|} \mathrm{b} \\ \mathrm{SG} 2 \end{array}$	5	1.5	VT	-	a	a	-3	0	3	dB
$\Delta \mathrm{Fc} 2{ }^{\prime}$	Frequency relative characteristics 2 ($\mathrm{f}=130 \mathrm{MHz}$; maximum)	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \text { b } \\ \text { SG3 } \end{gathered}$	$\begin{gathered} \text { b } \\ \text { SG3 } \end{gathered}$	$\begin{array}{\|c} \mathrm{b} \\ \text { SG3 } \end{array}$	5	1.5	VT	-	-	a	-1	0	1	dB
C.T. 1	Crosstalk 1 (f=50MHz)	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 2 \end{gathered}$	a	a	5	5	VT	-	a	a	-	-30	-20	dB
C.T.1'	Crosstalk 1 ($\mathrm{f}=130 \mathrm{MHz}$)	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \text { b } \\ \text { SG3 } \end{gathered}$	a	a	5	5	VT	-	a	a	-	-20	-15	dB
C.T. 2	Crosstalk 2 (f=50MHz)	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	-	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 2 \end{gathered}$	a	5	5	VT	-	a	a	-	-30	-20	dB
C.T.2'	Crosstalk 2 ($\mathrm{f}=130 \mathrm{MHz}$)	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	-	$\begin{gathered} \text { b } \\ \text { SG3 } \end{gathered}$	a	5	5	VT	-	a	a	-	-20	-15	dB
C.T. 3	Crosstalk 3 (f=50MHz)	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	-	a	$\begin{array}{\|c} \mathrm{b} \\ \mathrm{SG} 2 \end{array}$	5	5	VT	-	a	a	-	-30	-20	dB
C.T.3'	Crosstalk 3 ($\mathrm{f}=130 \mathrm{MHz}$)	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	-	a	$\begin{array}{\|c} \mathrm{b} \\ \text { SG3 } \end{array}$	5	5	VT	-	a	a	-	-20	-15	dB
Tr	Pulse characteristics 1	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \text { SG4 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG4 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 4 \end{gathered}$	5	3.3	2	-	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	-	3	7	nsec
Tf	Pulse characteristics 2	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \text { SG4 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG4 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 4 \end{gathered}$	5	3.3	2	-	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	-	4	8	nsec
V14th	Clamp pulse threshold voltage	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	-	a	-	5	5	2	-	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	1.0	1.5	2.0	Vdc
W14	Clamp pulse minimum width	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	-	a	a	5	5	2	-	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	-	0.1	0.5	$\mu \mathrm{sec}$
Pdch	Pedestal voltage temperatere characteristics1	$\begin{aligned} & \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 6 \end{gathered}$	5	5	2		SG5	a	-0.3	0	0.3	Vdc

ELECTRICAL CHARACTERISTICS (cont.)

Symbol	Parameter	Test conditions										Limits			Unit
		Test point (s)	Input			External power supply (V)				Pulse input					
			SW13 R-ch	$\begin{aligned} & \text { SW8 } \\ & \text { G-ch } \end{aligned}$	$\begin{aligned} & \text { SW3 } \\ & \text { B-ch } \end{aligned}$	V4	V17	V19	V36	SW18	$\begin{gathered} \hline \text { SW1 } \\ 5,10, \\ 15 \end{gathered}$	Min.	Typ.	Max.	
Pdcl	Pedestal voltage temperatere characteristics2	$\begin{array}{\|l} \hline \text { T.P. } 35 \\ \text { T.P. } 30 \\ \text { T.P. } 25 \end{array}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG6} \end{gathered}$	$\begin{gathered} \text { b } \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \text { b } \\ \text { SG6 } \end{gathered}$	5	5	2	-	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	-0.3	0	0.3	Vdc
OTr	OSD pulse characteristics1	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	-	a	a	5	5	2	3	a	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 7 \end{gathered}$	-	4	8	nsec
OTf	OSD pulse characteristics2	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	a	-	-	5	5	2	3	-	$\begin{gathered} \text { b } \\ \text { SG7 } \end{gathered}$	-	4	8	nsec
Oaj1	OSD adjusting control characteristics (maximum)	$\begin{array}{\|l} \hline \text { T.P. } 35 \\ \text { T.P. } 30 \\ \text { T.P. } 25 \end{array}$	-	a	-	5	5	2	4	-	$\begin{gathered} \text { b } \\ \text { SG7 } \end{gathered}$	3.5	4.0	4.5	VP-P
$\Delta \mathrm{Oaj} 1$	OSD adjusting control relative characteristics (maximum)		Relative to measured values above									0.8	1	1.2	-
Oaj2	OSD adjusting control characteristics (minimum)	$\begin{array}{\|l} \hline \text { T.P. } 35 \\ \text { T.P. } 30 \\ \text { T.P. } 25 \end{array}$	-	a	a	5	5	2	0	a	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 7 \end{gathered}$	-	0	0.5	VP-P
$\Delta \mathrm{Oaj} 2$	OSD adjusting control relative characteristics (minimum)		Relative to measured values above									0.8	1	1.2	-
OSDth	OSD input threshold voltage	$\begin{aligned} & \hline \text { T.P. } 35 \\ & \text { T.P. } 30 \\ & \text { T.P. } 25 \end{aligned}$	a	a	a	5	5	2	5	a	$\begin{gathered} \text { b } \\ \text { SG7 } \end{gathered}$	1.7	2.5	3.5	VDC
V1th	BLK input threshold voltage	$\begin{array}{\|l} \hline \text { T.P. } 35 \\ \text { T.P. } 30 \\ \text { T.P. } 25 \end{array}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG6} \end{gathered}$	$\begin{gathered} \text { b } \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \text { b } \\ \text { SG6 } \end{gathered}$	5	5	2	5	-	$\begin{gathered} \hline \text { SW1 } \\ \text { only } \\ \text { b } \\ \text { SG7 } \\ \hline \end{gathered}$	1.7	2.5	3.5	VDC

ELECTRICAL CHARACTERISTICS TEST METHOD

1. Because a description of signal input pin and pulse input pin switch numbers is already given in Supplementary Table, only external power supply switch numbers are included in the notes below.

Sub contrast voltages V4, V9 and V14 are always set to the same voltage, therefore only V4 is referred to in Supplementary Table.

Icc Circuit current

Measuring conditions are as listed in Supplementary Table.
Measured with an ammeter At test point A when SW1 is set to a.

Vomax Output dynamic range

Voltage V19 is varied as described below:

1. Increase V19 gradually while inputting SG6 to pin 13 (8 or 3).

Measure the voltage when the top of the waveform output at T.P25 (30 or 35) is distorted. The voltage is called VTR1 (VTG1 or VTB1). Next, decrease V19 gradually, and measure the voltage when the bottom of the waveform output at T.P35 (30 or 25) is distorted. The voltage is called VTR2 (VTG2 or VTB2).

2. Voltage $\mathrm{V}_{\mathrm{T}}\left(\mathrm{V}_{\mathrm{T} R}, \mathrm{~V}_{\mathrm{t}}\right.$ and $\left.\mathrm{V}_{\mathrm{TB}}\right)$ is calculated by the equation below:

Use relevant voltages, depending on the pin at which the waveform is output; specifically, use VTR1 when it is output at T.P25; VTG1, at T.P30, and VTB, at T.P35.
3. After setting VTR (VTG or VTB), increase the SG6 amplitude gradually, starting from 700 mV . Measure the amplitude when the top and bottom of the waveform output at T.P25 (30 or starts becoming distorted synchronously.

Vimax Maximum input

Measuring conditions are the same as those used above, except that the setting of V 17 is changed to 2.5 V as specified in Supplementary Table. Increase the input signal amplitude gradually, starting from 700 mV P-p. Measure the amplitude when the output signal starts becoming distorted.

Gv Maximum gain

Δ Gv Relative maximum gain

1. Input SG6 to pin 13 (8 or 3), and read the amplitude at output T.P25 (30 or 35). The amplitude is called Vor1 (VoG1 or Vob1) .
2. Maximum gain Gv is calculated by the equation below:

$$
\mathrm{GV}=20 \mathrm{LOG} \frac{\text { VOR1 (VOG1, VOB1) }}{} \frac{[\mathrm{VP}-\mathrm{P}]}{[\mathrm{VP}-\mathrm{P}]}
$$

3. Relative maximum gain $\Delta \mathrm{G}$ is calculated by the equation below: $\Delta \mathrm{Gv}=\mathrm{VOR}_{1} / \mathrm{VoG} 1, \mathrm{VoG}_{1} / \mathrm{Vob} 1, \mathrm{Vob} 1 / \mathrm{Vor} 1$

VCR1 Contrast control characteristics (typical)

ΔV CR1 Contrast control relative characteristics (typical)

1. Measuring conditions are as given in Supplementary Table.

The setting of V 17 is changed to 4 V .
2. Measure the amplitude output at T.P25 (30 or 35). The measured value is called Vor2 (Vog2 or Vob2).
3. Contrast control characteristics VCR1 and relative characteristics $\Delta \mathrm{VCR} 1$ are calculated, respectively, by the equations below:

$$
\mathrm{V}_{\mathrm{CR} 1}=20 \mathrm{LOG} \frac{\text { Vor2 (VoG2, Vob2) }}{\text { [VP-P] }} \mathrm{0.7}[\mathrm{VP-P]}
$$

$\Delta \mathrm{VCR} 1=\mathrm{Vor} 2 / \mathrm{VoG} 2, \mathrm{Vog} 2 / \mathrm{Vob} 2, \mathrm{Vob} 2 / \mathrm{Vor} 1$

VCR2 Contrast control characteristics (minimum)

 $\Delta \mathbf{V C R} 2$ Contrast control relative characteristics (minimum)1. Measuring conditions are as given in Supplementary Table. The setting of V 17 is changed to 1.0 V .
2. Measure the amplitude output at T.P25 (30 or 35). The measured value is called Vor3 (Vog3 or Vob3), and is treated as Vcr2.
3. Contrast control relative characteristics $\triangle \mathrm{VCR} 2$ are calculated by the equation below:
$\Delta \mathrm{Vcr} 2=\mathrm{Vor} 3 / \mathrm{VoG3}$, Vog3/Vob3, Vob3/Vor3

VscR1 Sub contrast control characteristics (typical)
$\Delta V s C R 1$ Sub contrast control relative characteristics (typical)

1. Set V4, V9 and V14 to 4.0V. Other conditions are as given in Supplementary Table.
2. Measure the amplitude output at T.P25 (30 or 35). The measured value is called Vor4 (Vog4 or Vob4).
3. Sub contrast control characteristics VsCR1 and relative characteristics $\Delta \mathrm{V}$ sCR1 are calculated, respectively, by the equations below:

$$
\text { VsCR } 1=20 \mathrm{LOG} \frac{\text { Vor4 }(\mathrm{VOG} 4, \mathrm{VOB4} 4)[\text { VP-P] }}{0.7}[\mathrm{VP-P]}
$$

$$
\Delta \mathrm{VSCR} 1=\mathrm{Vor} 4 / \mathrm{VoG} 4, \text { VoG4/Vob4, Vob4/Vor4 }
$$

VsCR2 Sub contrast control characteristics (minimum)

$\Delta V \operatorname{SCR} 2$ Sub contrast control relative characteristics (minimum)

1. Set V4, V9 and V14 to 1.0 V . Other conditions are as given in Supplementary Table.
2. Measure the amplitude output at T.P25 (30 or 35). The measured value is called Vors (Vog5 or Vobs).
3. Relative characteristics $\Delta \mathrm{V}$ sCR2 are calculated by the equation below:
Δ Vscr2=Vor5/VoG5, VoG5/Vob5, Vob5/Vor5

Vscr3 Contrast/sub contrast control characteristics (typical) ΔV scr3 Contrast/sub contrast control relative characteristics (typical)

1. Set V4, V9, V14 and V17 to 3.0V. Other conditions are as given in Supplementary Table.
2. Measure the amplitude at T.P25 (30 or 35). The measured value is called Vor6 (Vog6 or Vob6).

VCR3 $=20 \mathrm{LOG} \frac{\text { Vor6 (VOG6, VOB6) }}{\text { [VP-P] }}$
$\Delta \mathrm{VCR3}=$ Vor6/VoG6, Vog6/Vob6, Vob6/Vor6
$V_{B 1}$ Brightness control characteristics (maximum) $\Delta V_{B 1}$ Brightness control relative characteristics (maximum)

1. Measuring conditions are as given in Supplementary Table.
2. Measure the output at T.P25 (30 or 35) with a voltmeter. The measured value is called Vor7 (Vog7 or Vob7), and is treated as $V_{B 1}$.
3. To obtain brightness control relative characteristics, calculate the difference in the output between the channels, using Vor7, VoG7 and Vob7.

$$
\begin{aligned}
\Delta \mathrm{VB} 1 & =\text { VOR7-VOG7 } \\
& =\text { VOG7-VOB7 } \\
& =\text { VOB7-VOR7 }
\end{aligned}
$$

VB2 Brightness control characteristics (typical)

 ΔV в 2 Brightness control relative characteristics (typical)1. Measuring conditions are as given in Supplementary Table.
2. Measure the output at T.P25 (30 or 35) with a voltmeter.

The measured value is called Vor7' (VoG7' or Vob7'), and is treated as VB2.
3. To obtain brightness control relative characteristics ($\Delta \mathrm{V}$ в2), calculate the difference in the output between the channels, using Vort', Vog7', and Vobt'.

$$
\begin{aligned}
& \Delta \mathrm{VB}_{\mathrm{B}}=\text { VOR7 }^{\prime}-{ }^{-}{ }^{-}{ }^{\prime}{ }^{\prime} \\
& \text { [mV] } \\
& =\text { VoG7 }{ }^{-}-\text {Vob7 }{ }^{\prime} \\
& =\text { Vob }{ }^{\prime} \text {-VORT }{ }^{\prime}
\end{aligned}
$$

Vв3 Brightness control characteristics (minimum) $\Delta V_{\text {B3 }}$ Brightness control relative characteristics (minimum)

1. Measuring conditions are as given in Supplementary Table.
2. Measure the output at T.P25 (30 or 35) with a voltmeter.

The measured value is called Vor7" (VoG7" or Vob7"), and is treated as VB2.
3. To obtain brightness control relative characteristics ($\Delta \mathrm{V}_{\mathrm{B} 3}$), calculate the difference in the output between the channels, using Vor7", Vog7" and Vob7".

$$
\begin{array}{rlr}
\Delta \mathrm{VB3} 3 & =\text { VOR7"-VoG7" } & {[\mathrm{mV}]} \\
& =\text { VOG7"-VoB7" } \\
& =\text { VOB7"-Vor7" } &
\end{array}
$$

Fc1 Frequency characteristics1 (f=50MHz; maximum)
Δ Fc1 Frequency relative characteristics1
($\mathrm{f}=50 \mathrm{MHz}$; maximum)
Fc1' Frequency characteristics1 ($\mathrm{f}=130 \mathrm{MHz}$; maximum)
Δ Fc1' Frequency relative characteristics1
($\mathrm{f}=130 \mathrm{MHz}$; maximum)

1. Measuring conditions are as given in Supplementary Table.
2. SG1.SG2 and SG3 are input. The amplitude of the waveform output at T.P25 (30 or 35) is measured.
3. Supposing that the measured value is treated as amplitude Vor1 (VoG1 or Vob1) when SG1 is input, as Vor8 (VoG8 or Vob8) when SG2 is input, or as Vor9 (Vog9 or Vob9) when SG3 is input, frequency characteristics FC1 and FC1' are calculated as follows:

$$
\begin{array}{ccc}
\text { FC1=20LOG } & \text { VOR8 (VOG8, Vob8) } & {[\text { VP-P] }} \\
\cline { 2 - 3 } & \text { VOR1 (VOG1, VOB1) } & {[\text { VP-P] }} \\
\text { FC1'=20LOGG } & \text { Vor9 (VoG9, Vob9) } & {[\text { VP-P] }} \\
\cline { 2 - 3 } & \text { Vor1 (VoG1, Vob1) } & {[\text { VP-P] }}
\end{array}
$$

4. Frequency relative band widths $\Delta \mathrm{FC} 1$ and $\Delta \mathrm{FC} 1$ ' are equal to the difference in Fc1 and Fc1', respectively, between the channels.

Fc2 Frequency characteristics2 ($\mathrm{f}=50 \mathrm{MHz}$; maximum)
Δ Fc2' Frequency relative characteristics2 ($f=130 \mathrm{MHz}$; maximum)
Measuring conditions and procedure are the same as described in $\mathrm{FC}_{1}, \Delta \mathrm{FC}_{1}, \mathrm{FCl}_{1}, \Delta \mathrm{FCl}^{\prime}$, except that CONTRAST (V17) is turned down to 1.5 V .

C.T. 1 Crosstalk1 (f=50MHz)

C.T.1' Crosstalk1 ($\mathrm{f}=130 \mathrm{MHz}$)

1. Measuring conditions are as given in Supplementary Table.
2. Input SG2 (or SG3) to pin 13 (R-ch) only, and then measure the waveform amplitude output at T.P25 (30 or 35). The measured value is called Vor, Vog and or Vob respectively.
3. Crosstalk C.T. 1 is calculated by the equation below:

$$
\underset{\text { C.T.1 }}{\substack{\text { C.T.1') }}}=20 \mathrm{LOG} \frac{\text { VoG or Vob }}{} \underset{\text { Vor }}{[\text { VP-P] }}[\mathrm{CB}]
$$

C.T. 2 Crosstalk2 (f=50MHz)

C.T.2' Crosstalk2 ($\mathrm{f}=\mathbf{1 3 0 \mathrm { MHz } \text {) }) ~}$

1. Change the input pin from pin 13 (R-ch) to pin 8 (G-ch), and measure the output in the same way as in C.T.1, C.T.1'.
2. Crosstalk C.T. 2 is calculated by the equation below:

$$
\begin{aligned}
& \text { C.T.2 } \\
& \text { (C.T.2') }
\end{aligned}
$$

C.T. 3 Crosstalk3 (f=50MHz)

C.T.3' Crosstalk3 (f=130MHz)

1. Change the input pin from pin 13 (R-ch) to pin 3 (B-ch), and measure the output in the same way as in C.T.1, C.T.1'.
2. Crosstalk C.T. 3 is calculated by the equation below:

Tr Pulse characteristics1

Tf Pulse characteristics2

1. Measuring conditions are as given in Supplementary Table.
2. Measure the time needed for the input pulse to rise from 10% to 90% (Tr1) and to fall from 90% to 10% (Tf1) with an active prove.
3. Measure the time needed for the output pulse to rise from 10% to 90% (Tr2) and to fall from 90% to 10% (Tf2) with an active prove.
4. Pulse characteristics Tr and Tf are calculated by the equation below:
$\operatorname{Tr}(\mathrm{nsec})=\sqrt{(\operatorname{Tr} 2)^{2}-(\operatorname{Tr} 1)^{2}}$
$\mathrm{Tf}(\mathrm{nsec})=\sqrt{(\mathrm{Tf} 2)^{2}-(\mathrm{Tf} 1)^{2}}$

V14th Clamp pulse threshold voltage

1. Measuring conditions are as given in Supplementary Table.
2. Turn down the SG5 input level gradually, monitoring the output (about 2.0 VDC). Measure the SG5 input level when the output reaches 0 V .

W14 Clamp pulse minimum width

Under the same conditions as given in Note 19, reduce the SG5 pulse width gradually, monitoring the output. Measure the SG5 pulse width when the output reaches 0 V .

Росн Pedestal voltage temperatere characteristics1

Pdcl Pedestal voltage temperatere characteristics2

1. Measuring conditions are as given in Supplementary Table.
2. Measure the pedestal voltage at room temperature.

The measured value is called PDC1.
3. Measure the pedestal voltage at temperatures of $-20^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. The measured value is called, respectively, PDC2 and Pdc3.
4. $\mathrm{PdCH}=\mathrm{PdC1}-\mathrm{PdC2}$

Pdcl=Pdc1-Pdc3

OTr OSD pulse characteristics1

OTf OSD pulse characteristics2

1. Measuring conditions are as given in Supplementary Table.
2. Measure the time needed for the the output pulse to rise from 10% to 90% (OTr) and to fall from 90% to 10% (OTf) with an active prove.

Oaj1 OSD adjusting control characteristics (maximum) Δ Oaj1 OSD adjusting control relative characteristics (maximum)

1. Measuring conditions are as given in Supplementary Table.
2. Measure the amplitude at T.P25 (30 or 35). The measured value is called Vora (Voga or Voba), and is treated as Oaj1.
3. OSD adjusting control relative characteristics \triangle Oaj1 are calculated by the equation below:

Oaj2 OSD adjusting control characteristics (minimum) Δ Oaj2 OSD adjusting control relative characteristics (minimum)

1. Measuring conditions are as given in Supplementary Table, except that V36 is set to 0 V .
2. Measure the amplitude at T.P25 (30 or 35). The measured value is called Vorb (Vogb or VobB), and is treated as Oaj2.
3. OSD adjusting control relative characteristics $\triangle \mathrm{Oaj} 2$ are calculated by the equation below:

OSDth OSD input threshold voltage

1. Measuring conditions are as given in Supplementary Table.
2. Reduce the SG7 input level gradually, monitoring output.

Measure the SG7 level when the output reaches $0 V$. The
measured value is called OSDth.

V1th BLK input threshold voltage

1. Measuring conditions are as given in Supplementary Table.
2. Make sure that signals are not being output synchronously with SG7 (blanking period).
3. Reduce the SG7 input level gradually, monitoring output. Measure the SG7 level when the blanking period disappears. The measured value is called V 1 th.

INPUT SIGNAL

SG No.	Signals
SG1	Sine wave of amplitude $0.7 \mathrm{VP-P}(\mathrm{f}=1 \mathrm{MHz}$)
SG2	Sine wave with amplitude of $0.7 \mathrm{VP-P}$ ($\mathrm{f}=50 \mathrm{MHz}$)
SG3	Sine wave with amplitude of $0.7 \mathrm{VP-P}(\mathrm{f}=130 \mathrm{MHz}$)
SG4	Pulse with amplitude of $0.7 \mathrm{VP}-\mathrm{P}$ ($\mathrm{f}=1 \mathrm{MHz}$, duty $=50 \%$) Pulses which are synchronous with SG4 pedestal portion
SG5	Pulses which are synchronous with standard video step waveform pedestal portion: amplitude, 2.0VP-P; and pulse width, $3.0 \mu \mathrm{~s}$ (pulse width and amplitude sometimes variable)
SG6 Standard video step waveform	
$\begin{gathered} \text { SG7 } \\ \text { OSD BLK } \\ \text { and OSD } \\ \text { signals } \end{gathered}$	Pulses which are synchronous with standard video step waveform's video portions: amplitude, 4.0VP-P; and pulse width, $25 \mu \mathrm{~s}$

TEST CIRCUIT

TYPICAL CHARACTERISTICS

APPLICATION EXAMPLE

DESCRIPTION OF PIN

| Pin No. | Name | DC voltage (V) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DESCRIPTION OF PIN (cont.)

Pin No.	Name	DC voltage (V)	Peripheral circuit of pins	Description of function
$\begin{gathered} 6,31 \\ 11,26 \\ 16,21 \end{gathered}$	GND (B-ch) GND (G-ch) GND (R-ch)	GND	-	
17	Main contrast	2.5		Use at maximum 5V for stable operation.
18	CP IN	-		Input pulses of minimum 2.5 V . -Input at low impedance.
19	Brightness	-		
20, 22, 27, 32	NC	-	-	Connected to GND usually; otherwise kept open.
$\begin{aligned} & 23 \\ & 28 \\ & 33 \end{aligned}$	Hold (R) Hold (G) Hold (B)	Variable		A capacity is needed on the GND side.

DESCRIPTION OF PIN (cont.)

Pin No.	Name	DC voltage (V)	Peripheral circuit of pins	Description of function
$\begin{aligned} & 24 \\ & 29 \\ & 34 \end{aligned}$	Vcc2 (R) Vcc2 (G) Vcc2 (B)	Apply 12	Pin 24 Pin 29 Pin 34	Used to supply power to output emitter follower only. -Apply equivalent voltage to 3 channels.
$\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$	OUTPUT (R) OUTPUT (G) OUTPUT (B)	Variable		-A resistor is needed on the GND side. Set discretionally to maximum 15 mA , depending on the required driving capacity.
36	OSD adjust	Apply at open 5.5 V		Pulled up directly to Vcc or open if not used.

