RENESAS

M52791SP/FP AV Switch with I²C Bus Control

REJ03F0188-0200 Rev.2.00 Sep 14 2006

Description

The M52791 is AV switch semiconductor integrated circuit with I²C bus control.

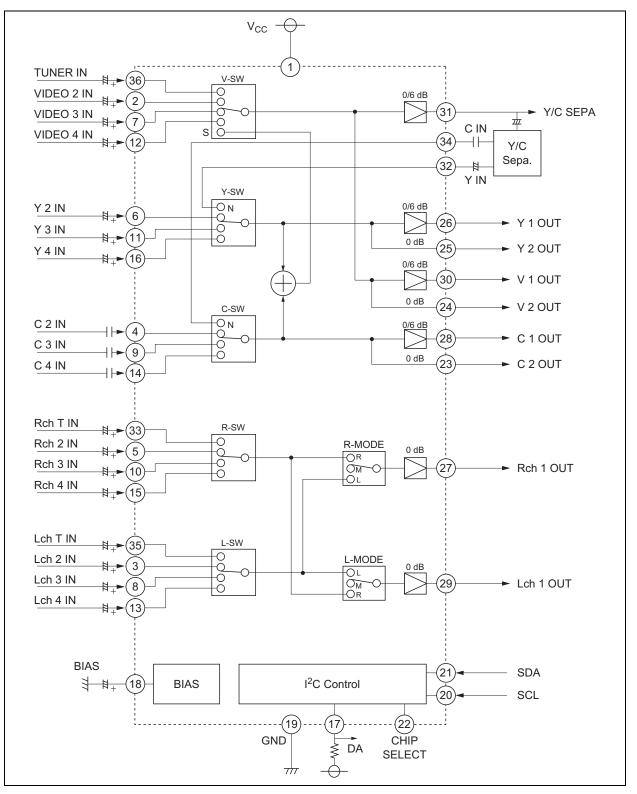
This IC contains 1-channels of 4-input audio switches and 1-channels of 4-input video switches. Each audio switches and video switches can be controlled independently.

The video switches contain amplifiers can be controlled a gain of output 0 dB or 6 dB.

Features

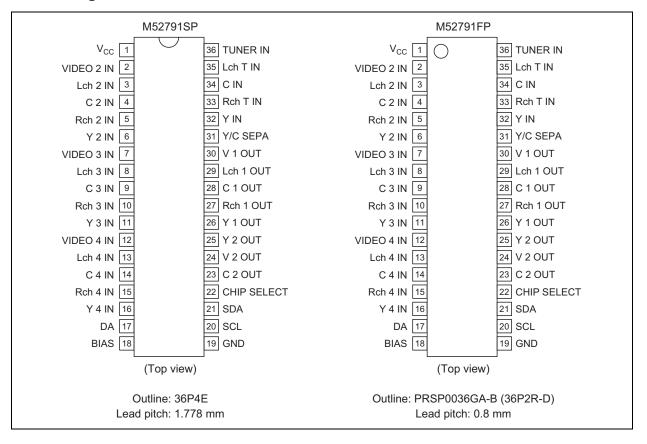
- Video and stereo sound switches in one package
- Wide frequency range (video switch): DC to 20 MHz
- High separation (video switch): Crosstalk –60 dB (Typ) at 1 MHz
- Two types of packages are provided: SDIP with a lead pitch of 1.778 mm (M52791SP); and SSOP with a lead pitch of 0.8 mm (M52791FP).

Application


Video equipment

Recommended Operating Condition

Supply voltage:4.7 V to 9.3 VRated supply voltage:5 V, 9 VMaximum output current:49 mA (at 9 V)


Block Diagram

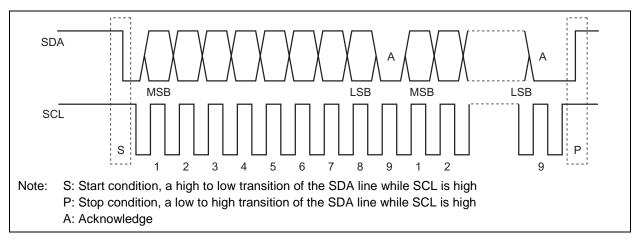
Rev.2.00 Sep 14, 2006 page 2 of 13

RENESAS

Pin Arrangement

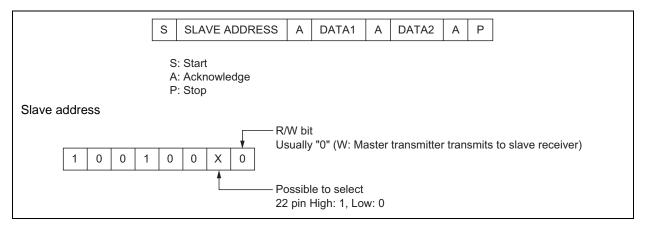
Pin Description

Pin No.	Name	Peripheral Circuit Pins	DC Voltage (V)	Remarks
1	V _{CC}	_	9 V	5 to 9 V
2 6 7 11 12 16 32 36	VIDEO 2 IN Y 2 IN VIDEO 3 IN Y 3 IN VIDEO 4 IN Y 4 IN Y IN TUNER IN		3.6 V	Clamp in
3 5 8 10 13 15 33 35	Lch 2 IN Rch 2 IN Lch 3 IN Rch 3 IN Lch 4 IN Rch 4 IN Rch T IN Lch T IN		4.7 ∨	
4 9 14 34	C 2 IN C 3 IN C 4 IN C IN		4.7 V	
17	DA		V _{OL} max = 0.4 V	At lin = 1 mA
18	BIAS		4.2 V	
19 20	GND SCL		— V _{IL} max = 1.5 V V _{IH} min = 3.0 V	



Pin No.	Name	Peripheral Circuit Pins	DC Voltage (V)	Remarks
21	SDA		V _{IL} max. = 1.5 V V _{IH} min. = 3.0 V V _{OL} max. = 0.4 V	At lin = 3 mA
22	CHIP SELECT		SLAVE ADDRESS 0 to 1.5 V: 90H 2.5 to V _{CC} : 92H OPEN: 90H	
26 28 30	Y 1 OUT C 1 OUT V 1 OUT		C OUT 4.0 V V OUT Y OUT SYNC CHIP DC = 2.9 V	
23 24 25	C 2 OUT V 2 OUT Y 2 OUT		C OUT 3.3 V V OUT Y OUT SYNC CHIP DC = 2.2 V	
27 29	Rch 1 OUT Lch 1 OUT		4.0 V	
31	Y/C SEPA		SYNC CHIP DC = 2.9 V	

I²C Bus


 I^2C Bus (Inter IC Bus) is multi master bus system developed by PHILIPS. Two wires (SDA-serial data, SCL-serial clock) realize functions of start, stop, transferring data, synchronization and arbitration. The output stages of device connected to the bus must have an open drain or open collector in order to perform the wired-AND function.

Every byte put on the SDA line must be 8-bits long. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Control

This IC controls 2-channel switches with 2-byte data (DATA1 and DATA2). Video switches are controlled by DATA1. Audio switches are controlled by DATA2.

Data Byte Format

M52791 FUNCTION TABLE

S SLAVE ADDRESS A DATA (D7 to D0) A DATA (DF to D8) A P

SLAVE ADDRESS

SLAVE ADDRESS	A6	A5	A4	A3	A2	A1	A0	R/W
	1	0	0	1	0	0	0/1	0

DATA1 (D7 to D0) CONT

DATA CONT	D7	D6	D5	D4	D3	D3 D2		D0
	0 FIX	0 FIX	SEPA AMP	Y/C AMP	V AMP1	S/N	VIDEO S	W CONT

VIDEO SW CONT

	DATA		OUT				
S/N (S:1)	V-	SW	V OUT				
D2	D1	D0	Y/C SEPA	Y OUT	C OUT		
0	0	0	T IN	Y IN	C IN		
0	0	1	V 2 IN	Y IN	C IN		
0	1	0	V 3 IN	Y IN	C IN		
0	1	1	V 4 IN	Y IN	C IN		
1	0	0	Y/C MIX T	Y IN	C IN		
1	0	1	Y/C MIX 2	Y 2 IN	C 2 IN		
1	1	0	Y/C MIX 3	Y 3 IN	C 3 IN		
1	1	1	Y/C MIX4	Y 4 IN	C 4 IN		

AMP GAIN CONT

DATA	AMP	DATA	AMP	DATA	AMP
D5	SEPA AMP	D4	Y/C AMP	D3	V AMP
0	0 dB	0	0 dB	0	0 dB
1	6 dB	1	6 dB	1	6 dB

DATA2 (DF to D8) CONT

DATA CONT	DF	DE	DD	DC	DB	DA	D9	D8
	AUDIO	MODE	0 FIX	0 FIX	0 FIX	I/O	AUDIO S	W CONT

AUDIO SW CONT

МО	DE	MU	ITE	R/R		L/L		NORMAL			
DATA		OUT		OUT		OUT		0	JT	0	JT
D9	D8	Lch OUT 1	Rch OUT 1								
0	0	MUTE	MUTE	Rch T IN	Rch T IN	Lch T IN	Lch T IN	Lch T IN	Rch T IN		
0	1	MUTE	MUTE	Rch 2 IN	Rch 2 IN	Lch 2 IN	Lch 2 IN	Lch 2 IN	Rch 2 IN		
1	0	MUTE	MUTE	Rch 3 IN	Rch 3 IN	Lch 3 IN	Lch 3 IN	Lch 3 IN	Rch 3 IN		
1	1	MUTE	MUTE	Rch 4 IN	Rch 4 IN	Lch 4 IN	Lch 4 IN	Lch 4 IN	Rch 4 IN		

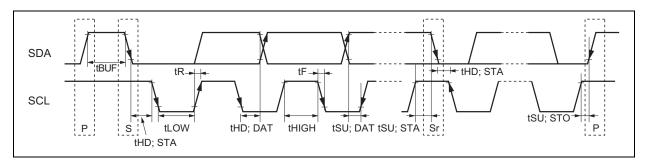
I/O CONT

DATA	OUT
DA	DA OUT
0	HIGH
1	LOW

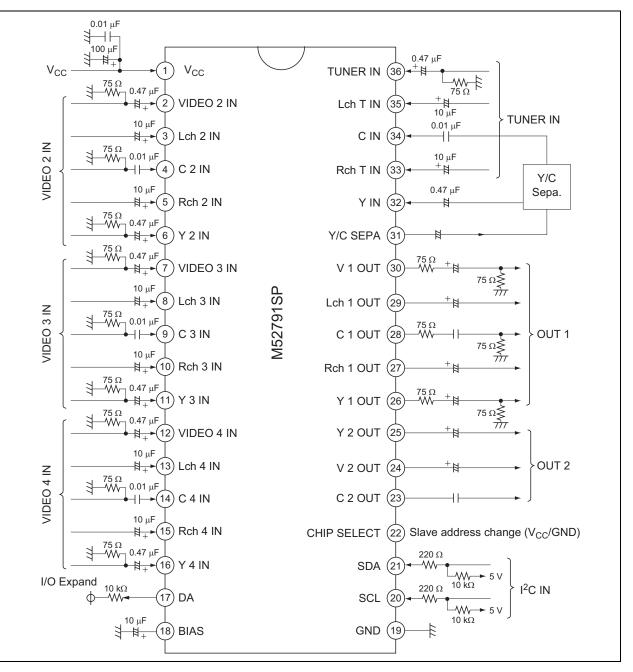
AUDIO MODE CONT

DA	ТА	
DF	DE	MODE
0	0	MUTE
0	1	R/R
1	0	L/L
1	1	NORMAL

Electrical Characteristics


Item	Symbol	Min	Тур	Max	Unit	Test Condition
Supply voltage	V _{cc}	4.7	_	9.3	V	
Circuit current	I _{CC}		49	64	mA	$V_{CC} = 9 V$, Vin = 0 Vp-p, RI = $\infty \Omega$
			42	55		$V_{CC} = 5 \text{ V}, \text{ Vin} = 0 \text{ Vp-p}, \text{ RI} = \infty \Omega$
Video		1	1	1	1	
Voltage gain	G	-0.5	0	0.5	dB	f = 100 kHz, 1 Vp-p (0 dB) (T→V _{10UT})
		5.5	6	6.5		f = 100 kHz, 1 Vp-p (6 dB) (T→V _{10UT})
		-0.5	0	0.5		f = 100 kHz, 1 Vp-p (0 dB) (Y→V _{10UT})
		5.5	6	6.5		f = 100 kHz, 1 Vp-p (6 dB) (Y→V _{10UT})
Frequency characteristics	F	-2.0	0	2.0	dB	f = 10 MHz/100 kHz, 1 Vp-p (0 dB) (T→V _{10UT})
		-2.0	0	2.0		f = 10 MHz/100 kHz, 1 Vp-p (6 dB) (T→V _{10UT})
		-2.0	0	2.0		f = 10 MHz/100 kHz, 1 Vp-p (0 dB) (Y→V _{10UT})
		-2.0	0	2.0		f = 10 MHz/100 kHz, 1 Vp-p (6 dB) (Y→V _{10UT})
Dynamic range	D	4	_	—	Vp-p	$V_{CC} = 9 V (0 \text{ dB}) (T \rightarrow V_{1OUT})$ f = 100 kHz
		2		_		$V_{CC} = 5 V (0 \text{ dB}) (T \rightarrow V_{1OUT})$ Maximum with
		4		_		$V_{CC} = 9 V (0 \text{ dB}) (Y \rightarrow V_{1OUT})$ distortion
		2		_		$V_{CC} = 5 V (0 \text{ dB}) (Y \rightarrow V_{10UT})$ <1.0%
Input impedance	Z _{IC}	14	20	26	kΩ	(C, C ₂ , C ₃ , C ₄)
	Z _{IV}	—	—	—		Clamp in (T, V ₂ , V ₃ , V ₄)
	Z _{IY}	_	_			Clamp in (Y, Y ₂ , Y ₃ , Y ₄)
Crosstalk	СТ		-60	-54	dB	$f = 1 \text{ MHz}, 1 \text{ Vp-p } T \rightarrow V_{1OUT} \text{ (at } V_2 \text{ mode)}$
Audio						
Voltage gain	G	-0.5	0	0.5	dB	$f = 1 \text{ kHz}, 1 \text{ Vp-p} (V_{CC} 9 \text{ V}) (R_T \rightarrow R_{1OUT})$
		-0.5	0	0.5		$f = 1 \text{ kHz}, 1 \text{ Vp-p} (V_{CC} 5 \text{ V}) (R_T \rightarrow R_{1OUT})$
Frequency characteristics	F	-1	0	1	dB	f = 100 kHz/1 kHz, 1 Vp-p ($R_T \rightarrow R_{1OUT}$)
Total harmonic distortion	THD	—	0.01	0.05	%	f = 1 kHz, 2 Vp-p, at 400 Hz HPE + 30 kHz
						LPF ($R_T \rightarrow R_{1OUT}$)
Dynamic range	D	5.5	6.0	—	Vр-р	f = 1 kHz, Maximum with distortion < 0.5%
						$(R_T \rightarrow R_{1OUT})$
Output DC offset voltage	VOFF	-20	0	20	mV	(MODE: R_T , R_2 , R_3 , $R_4 \rightarrow R_{10UT}$)
Input impedance	Z1	22	30	38	kΩ	(R _T , R ₂ , R ₃ , R ₄ , L _T , L ₂ , L ₃ , L ₄)
Crosstalk	CT	—	-90	-84	dB	1 kHz, 1 Vp-p $R_T \rightarrow R_{1OUT}$ (at R_2 mode)
I ² C Bus control signal	T	1	1	1	1	
Max. input high voltage	VIH	3.0	—	5.0	V	
Min. input low voltage	VIL	0.0	—	1.5		
Low level output voltage	V _{OL}	0.0		0.4		SDA = 3 mA
(SDA)		40		10	•	
High level input current	IIH	-10		10	μA	SDA, SCL = 4.5 V
Low level input current	l _{IL}	-10	—	10	60-	SDA, SCL = 0.4 V
SCL clock frequency Time of bus must be free	f _{SCL}	0.0	—	100	kHz	
before a new transmission	t _{BUF}	4.7	_	_	μS	
can start						
Hold time at start condition	t _{HD} ; STA	4.0	_			
The low period of the clock	t _{LOW}	4.7				
The high period of the	t _{HIGH}	4.0				
clock						
Step-up time for start	t _{SU} ; STA	4.7	—	—		
condition	1					

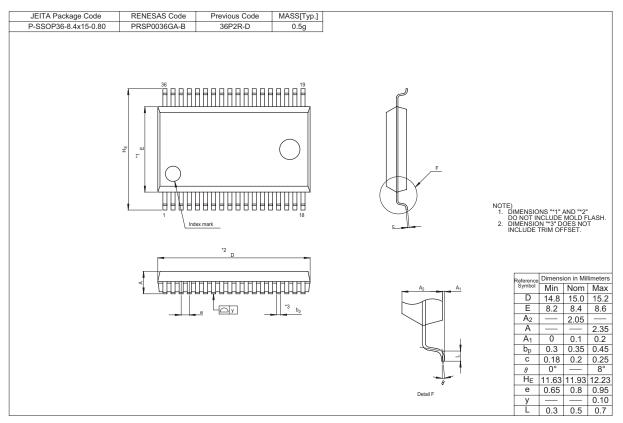
Electrical Characteristics (cont.)


						(Ta = 25° C, V _{CC} = 9 V, unless otherwise noted)
ltem	Symbol	Min	Тур	Max	Unit	Test Condition
Hold time DATA	t _{HD} ; DAT	5.0	—	—	ns	
Setup time DATA	t _{SU} ; DAT	250	—	—		
Rise time of both SDA and SCL line	t _R	—	—	1000		
Fall time of both SDA and SCL line	t _F	—	—	300		
Setup time for stop condition	t _{su} ; STO	4.0	_	_	μS	

I²C Bus Control Signal

Application Circuit Example

Note How To Use This IC


- Input signal with sufficient low impedance to input terminal.
- The capacitance of output terminal as small as possible.
- Set the capacitance between V_{CC} and GND near the pins if possible.
- Assign an area as large as possible for grounding.

Power-on Reset

- The M52791 has an internal power-on reset function that sets each control register to "0" during IC power ON.
- The power-on reset VTH has 2.5 V.

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corp. Sumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- A second product on the information published by Refress Technology Corp. by Various means, including the Refress Technology Corp. Semiconductor home page (http://www.renessa.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
 Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use
- product contained herein for any specific purposes, such as apparatus or systems for transportation, venicular, metricar, acrospace, nector, or analysis of specific use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com