M52959FP

PSD ON CHIP DISTANCE DETECTION SIGNAL PROCESSOR

DESCRIPTION

M52959FP is a semiconductor integrated circuit built-in PSD(Position Sensitive Device) and distance detection signal processor for 3V supply voltage.

This device transforms each signal current(I1 and I2) from PSD sensor to the voltage, and outputs it as the 4 Zone data after doing calculation of I1/(I1+I2).

PIN CONFIGURATION (TOP VIEW) FEATURES PSD on chip (Sensor size=0.5mm x 0.7mm) • Wide operating supply voltage range Vcc=2.0V to 5.5V VR2 10 CHN 1 · Built-in clamp circuit VR1 2 9 GND APPLICATION Auto focus control for the CAMERA 3 8 CHF Sensor for short distance OUT2 etc OUT1 4 7 Vcc RECOMMENDED OPERATING CONDITION Supply voltage •••••••••• 2.0 to 5.5V STB CONT 5 6 Rated sucoly voltage 3.0V ... 10Pin Clear Plastic Mold Package (10C2F) or 10Pin Infrared Permeation Plastic Mold Package (10B2F)

MITSUBISHI

M52959FP

PSD ON CHIP DISTANCE DETECTION SIGNAL PROCESSOR

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C ,unless noted)

Parameter	Symbol	Ratings	Unit	Remark
Supply voltage	Vcc	7.0	V	note 1
Power dissipation	Pd	200	mW	Ta = 25°C
Thermal derating	κθ	3.3	mW/°C	Ta≥25°C
Pin input voltage	VIF	7.0	V	Pin3,4,5,6
Another pin input voltage	VI/O	- 0.3 to Vcc+0.3	V	note 2
Output pin inflow current	Isout	0.5	mA	NPN open collector
Operating temperature	Topr	- 10 to 60	°C	
Storage temperature	Tstg	- 30 to 85	°C	
Surge voltage	Vsurge	<u>+</u> 1000V over		C=100PF R=1.5KΩ

note 1 : As a principle,do not provide a supply voltage reversely. note 2 : As a principle,do not provide over supply voltage or under ground voltage.

THERMAL DERATING (MAXIMUM RATING)

MITSUBISHI (2/8)

M52959FP

PSD ON CHIP DISTANCE DETECTION SIGNAL PROCESSOR

SEQUENTIAL TIME CHART EXAMPLE

Controls

- 1. First,STB terminal set Low,then Power On Reset circuit operate.This Power On Reset circuit resets Built-in logic circuits.
- 2. After Power On Reset circuit stoped, Surround light Hold Capacitor quik charge between the first CONT pulse edge from High to Low and second CONT pulse edge from High to Low.
- 3. After quik charge, set Stabilization Period for about 1ms.
- 4. After quik charge, Surround light hold between the first CONT pulse edge from Low to High and second CONT pulse edge from Low to High.
- 5, After quik charge, Zone judges at the first CONT pulse edge from High to Low and output the Zone Data to OUT1, OUT2 terminals by 2bit at next CONT pulse edge from Low to High.
- 6. It can repeat distance detection by continuing control of 4 and 5.
- 7. It needs the signal synchronized with timing of Surround light hold as radiation control signal of IRED.

M52959FP

PSD ON CHIP DISTANCE DETECTION SIGNAL PROCESSOR

ELECTRICAL CHARACTERISTICS (Ta=25°C , Vcc=3.0V , dark situation , unless otherwise noted)

Classification	Parameter	Symbol	Test condition		Limit	Unit	Note	
Classication				Min.	Тур.			Max.
	Operating supply voltage range	VCC		2.0	3.0	5.5	V	
Consuming current	Usual consuming current	ICC		-	6.0	8.0	mA	*1
	While Quick charge consuming current	ICCQC	While CH Quick charge cunsuming current	-	10.0	13.0	mA	*1
	While STAND BY consuming current	ICCS		_	-	1.0	μA	*1
	CONT "H" input voltage	VCOH		1.1	-	7.0	V	
CONT	CONT "L" input voltage	VCOL		0	-	0.3	V	
torrinida	CONT "H" input current	ICOH	VIH=5.5V	-	-	1.0	μA	
	CONT "L" input current	ICOL	VIL=0V	-78	-60	-42	μA	
	STB "H" input voltage	VSTH		VCC -0.3	-	7.0	V	
STB terminal	STB "L" input voltage	VSYL		0	-	0.3	V	
	STB "H" input current	ISTH	VIH=5.5V	_	_	3.0	μA	
	STB "L" input current	ISTL	VIL=0V	-150	-100	-50	μA	
Surround	CH Quick charge current	ICHQC	VCH=0V	-1200	-800	-400	μA	*1
light Hold Capacitor	CH stationary charge current	ICHC	VCH=0V	-30	-20	-10	μA	*1
	CH stationary discharge current	ICHD	VCH=1.5V	10	20	30	μA	*1
Output circuit	OUT leak current	IOUT	VIN=5.5V	-	-	1.0	μΑ	*1
	OUT saturationt voltage	VOUT	IOUT=500µA	_	-	0.3	V	*1
	VR output current	IVR	VVR=0V	-13	-10	-7	μA	*1
AF characteristics	Far diatance detection characteristics	ST1	No Signal		Nearest zone			*2
	Near distance detection characteristics	ST2	Signal = 100nA		Farther zone			*3
	Clamp level	ICLAM		0.25	0.5	0.75	nA	*4
	PSD resistance value	RPSD		84	140	196	KΩ	*4

MITSUBISHI ICs(AV COMMON) M52959FP PSD ON CHIP DISTANCE DETECTION SIGNAL PROCESSOR

- *1 Set up the logic control terminal, correspond to the parameter.
- *2 This measuring have to put DUT box under dark condition.
- *3 Regulate IRED driving current so that PSD output will become equivalent to 100nA and irradiate IC with synchronizing IRED radiation.
 Set zone resistance VR1 = VR2 = 2KΩ

*4 Reference value

PSD SPECTRAL RESPONSIVITY CHARACTERISTICS

Characteristic at using Infrared Permeation Plastic Mold Package

MITSUBISHI

M52959FP

PSD ON CHIP DISTANCE DETECTION SIGNAL PROCESSOR

Interface

Terminal name	Circuit diagram	Parameter	Limit Min. Typ. Max.		Unit	Test conditions and note	
	, o l	"H" input voltage	1.1		7.0	- ν - μΑ	
CONT		"L" input voltage	0		0.3		
		"H" input current		_	1.0		VIH=5.5V
		"L" input current	-78	-60	-42		VIL=0V
STB		"H" input voltage	VCC -0.3		7.0	V	
		"L" input voltage	0		0.3	-	
		"H" input current	_	_	3.0	μΑ	VIH=5.5V
		"L" input current	-150	-100	-50		VIL=0V
OUT		"L" output current	_	_	0.3	V	IOL=500µA
		"H" leak current	_		1.0	μA	VIN=5.5V

Ta=25°C, VCC=3.0V , dark condition

MITSUBISHI ICs(AV COMMON) M52959FP PSD ON CHIP DISTANCE DETECTION SIGNAL PROCESSOR

ADJUSTMENT RANGE OF ZONE SETTING RESISTANCE AND OUTPUT FUNCTION

In case of using volume $10 K\Omega$ for the setting resistance VR1 and VR2 , the adjustment range becomes the bottom figure.

Zone Decision result is outputted as mentioned in the bottom figure by the digital style from OUT1 and OUT2.

		OUT1	OUT2		
nea	r Zone 1	L	L		
	Zone 2	н	L		
	Zone 3	L	н		
far	Zone 4	н	Н		

APPLICATION EXAMPLE

MITSUBISHI (7/8)

MITSUBISHI ICs(AV COMMON) M52959FP

PSD ON CHIP DISTANCE DETECTION SIGNAL PROCESSOR

Note regarding these materials —

- These materials are intended as reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's right, originating in the use of any product data, diagrams, charts of circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake.
 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for special applications, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

• Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.