Linear IC General purpose Converter cmos

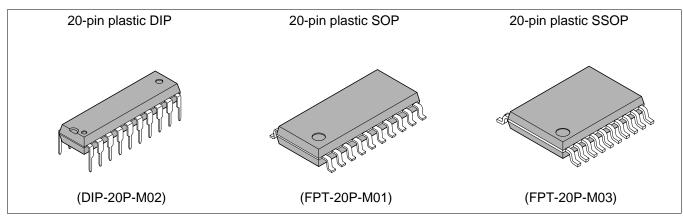
D/A Converter for Digital Tuning (12 channels. 8-bit, with OP amplifier)

MB88346B

DESCRIPTION

The MB88346B features 12 channels of 8-bit D/A converters with output amplifier for digital tuning. The output amplifier provides high current drive capability.

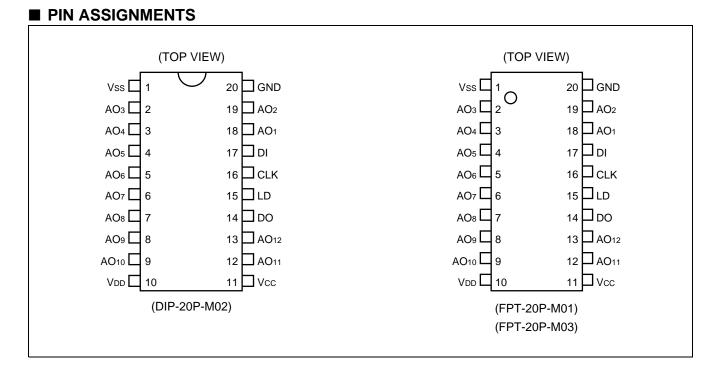
As the MB88346B inputs data in serial, it requires only three control lines and can also be cascade-connected with the MB88340 series.


The MB88346B is suitable for electronic volumes and replacement for potentiometers for adjustment, in addition to normal D/A converter applications.

■ FEATURES

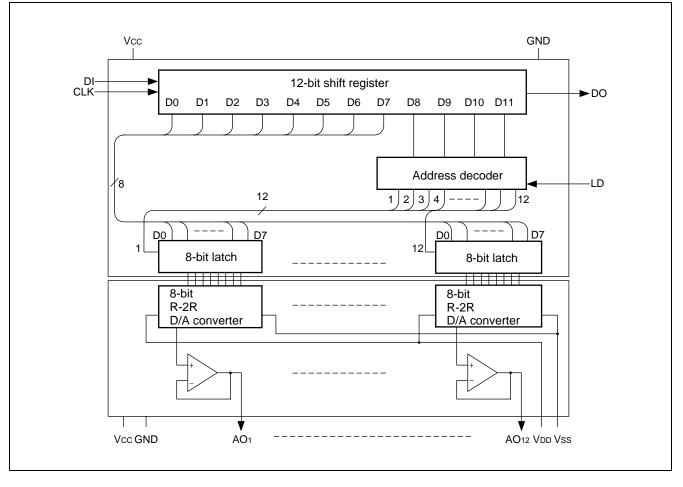
- Low power consumption
- Small package
- Integrating 12 channels of R-2R type 8-bit D/A converter

(Continued)


PACKAGES

(Continued)

- Built-in analog output amplifier (Max +1.0 mA sink/source current)
- Analog output range : 0 to Vcc
- The range of D/A conversion can be independently set by separated the power supply for MCU interface and OP amplifier and the power supply for D/A converter.
- Capable of being controlled directly by a 3-V MCU (input voltage : "H" = 0.5 Vcc, "L" = 0.2 Vcc)
- Serial data input, 2.5 MHz operation
- CMOS process
- Package lineup : DIP 20-pin, SOP 20-pin, SSOP 20-pin



PIN DESCRIPTION

Pin No.	Symbol	I/O	Pin name	Function				
17	DI*	I	Data input pin	This pin inputs 12-bit serial data.				
14	DO	0	Data output pin	This pin outputs MSB bit data of 12-bit shift register.				
16	CLK*	I	Shift clock input pin	Input signal from DI pin is inputted to 12-bit shift register at rising of shift clock.				
15	LD*	I	Load signal input pin	If input "H" level to LD pin, the data of 12-bit shift register is loaded to the decoder and the register for D/A output				
18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13	AO1, AO2, AO3, AO4, AO5, AO6, AO7, AO8, AO9, AO10, AO11, AO12	Ο	D/A output pin	These pins output analog data of 8-bit D/A converter with OP amplifier.				
11	Vcc		Power supply pin	Power supply pin of MCU interface and OP amplifier				
20	GND		Ground pin	Ground pin of MCU interface and OP amplifier				
10	Vdd		Power supply pin	Power supply pin of D/A converter				
1	Vss		Ground pin	Ground pin of D/A converter				

* : When three pins, DI, CLK, and LD pins are connected to 3-V MCU, they are fixed to "L" level at non transfer.

BLOCK DIAGRAM

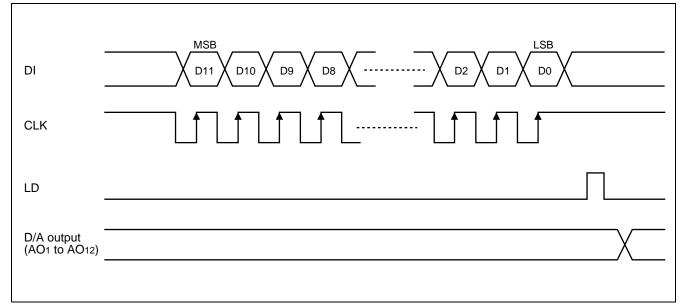
DATA FOR CHIP CONTROL

1. Data for Shift Register

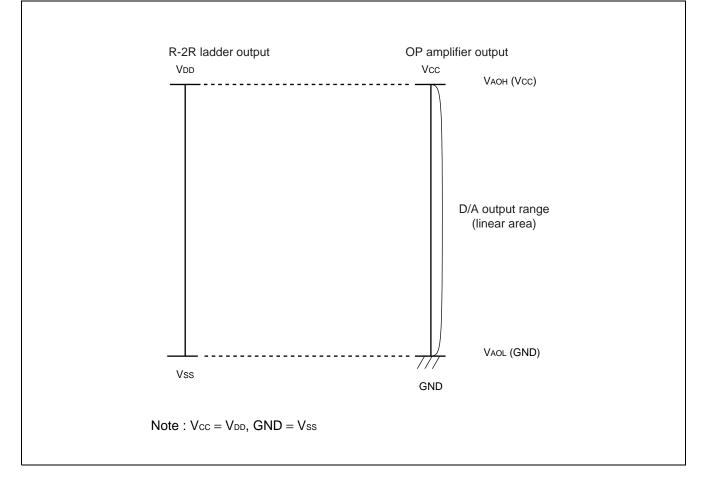
- The chip is controlled by 12 bits of data input to the shift register.
- The shift register inputs a total of 12 bits of data consisting of a four-bit address selection signal and an eightbit D/A converter control signal.
- A data to the shift register is inputted to the DI pin in the order of D11 (MSB) to D0 (LSB) .

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11
D/A converter control signal											

2. D/A Converter Control Signal


			Input da	ta signal				D/A converter output voltage
D0	D1	D2	D3	D4	D5	D6	D7	
0	0	0	0	0	0	0	0	≅ Vss
1	0	0	0	0	0	0	0	$\cong V_{\text{REF}} \ / \ 255 \times 1 + V_{\text{SS}}$
0	1	0	0	0	0	0	0	$\cong V_{\text{REF}} \ / \ 255 \times 2 + V_{\text{SS}}$
1	1	0	0	0	0	0	0	$\cong V_{\text{REF}} \ / \ 255 \times 3 + V_{\text{SS}}$
5	S	S	5	5	5	5	5	5
0	1	1	1	1	1	1	1	$\cong V_{\text{REF}} \ / \ 255 \times 254 + V_{\text{SS}}$
1	1	1	1	1	1	1	1	$\cong V_{DD}$

 $V_{REF} = V_{DD} - V_{SS}$


3. Address Selected Signal

	Input da	ta signal		Address colocted sequence
D8	D9	D10	D11	Address selected sequence
0	0	0	0	Don't Care
0	0	0	1	AO ₁ selected
0	0	1	0	AO ₂ selected
0	0	1	1	AO ₃ selected
0	1	0	0	AO ₄ selected
0	1	0	1	AO₅ selected
0	1	1	0	AO ₆ selected
0	1	1	1	AO ₇ selected
1	0	0	0	AO ₈ selected
1	0	0	1	AO ₉ selected
1	0	1	0	AO ₁₀ selected
1	0	1	1	AO11 selected
1	1	0	0	AO ₁₂ selected
1	1	0	1	Don't Care
1	1	1	0	Don't Care
1	1	1	1	Don't Care

■ TIMING CHART AT DATA SETTING

■ ANALOG OUTPUT VOLTAGE RANGE

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rat	Rating		Remarks
Parameter	Symbol	Condition	Min	Max	Unit	Remarks
Power supply veltage	Vcc		- 0.3	+ 7.0	V	
Power supply voltage	Vdd	The case that GND is referred.	- 0.3	+ 7.0	V	$V_{CC} \geq V_{DD}$
Input voltage	Vin	Ta = +25 °C	- 0.3	Vcc + 0.3	V	
Output voltage	Vout		- 0.3	Vcc + 0.3	V	
Power consumption	PD			250	mW	
Operating temperature	Та		- 40	+ 85	°C	
Storage temperature	Tstg		- 55	+ 150	°C	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Va	ue	Unit
Faiametei	Symbol	Min	Max	Onic
Power supply Voltage	Vcc	4.5	5.5	V
rower supply voltage	GND		0	V
Analog output source current	Isource		1.0	mA
Analog output sink current	sink		1.0	mA
Oscillation limited output capacitance	Сог		1.0	μF
Operating temperature	Та	- 40	+ 85	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(1) Digital block

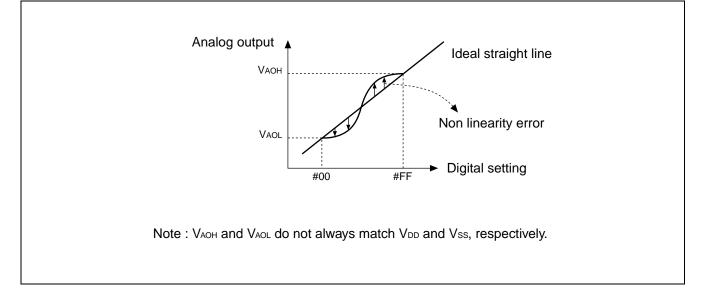
(Vdd, Vcc = $+5 \text{ V} \pm 10\%$ (Vcc \geq Vdd), GND, Vss = 0 V, Ta = -40 °C to + 85 °C)

Parameter	Symbol	Pin name	Conditions		Value		Unit
Farameter	Symbol	Finname	Conditions	Min	Тур	Max	Unit
Power supply voltage	Vcc			4.5	5.0	5.5	V
Power supply current	Icc	Vcc	At CLK = 1 MHz operating (at no load)		2.5	4.5	mA
Input leakage current	Iilk	CLK	$V_{IN} = 0$ to V_{CC}	- 10		10	μΑ
"L" level input voltage	VIL	DI			_	0.2 Vcc	V
"H" level input voltage	Vін	LD		0.5 Vcc			V
"L" level output voltage	Vol	DO	lo∟ = 2.5 mA			0.4	V
"H" level output voltage	Vон		Іон = - 400 μА	Vcc-0.4			V

Note : IoL and IoH are output load current.

(2) Analog block

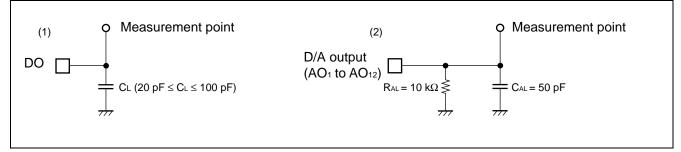
Deremeter	Cumhal		Conditions		Value		11
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit
Consumption current	ldd	Vdd	No load		0.2	0.5	mA
Analog power	Vdd	Vdd	Vdd – Vss ≥ 2.0 V	2.0		Vcc	V
supply voltage	Vss	Vss	V UD – V SS \geq 2.0 V	GND		Vcc - 2.0	V
Resolution	Res		Monotonic increase		8		bit
Non linearity error	LE	AO1 to AO12	No load $V_{DD} \le V_{CC} - 0.1 \text{ V}$ $V_{SS} \ge 0.1 \text{ V}$	- 1.5	0	1.5	LSB
Differential linearity error	DLE	A012	No load $V_{DD} \le V_{CC} - 0.1 \text{ V}$ $V_{SS} \ge 0.1 \text{ V}$	- 1.0		1.0	LSB
Output minimum voltage 1	VAOL1		No load, $V_{SS} = 0 V$ When digital setting is #00.	Vss	_	Vss + 0.1	V
Output minimum voltage 2	VAOL2	-	$I_{\text{source}} = 500 \ \mu\text{A}$ When digital setting is #00.	Vss - 2.0	Vss	Vss + 0.2	V
Output minimum voltage 3	VAOL3	AO 1	$I_{sink} = 500 \ \mu A$ When digital setting is #00.	Vss	_	Vss + 0.2	V
Output minimum voltage 4	VAOL4	to AO 12	$\label{eq:VDD} \begin{split} V_{DD} &= V_{CC} = 5.0 \ V \\ V_{SS} &= GND = 0.0 \ V \\ I_{source} &= 1.0 \ mA \\ When digital setting is #00. \end{split}$	Vss - 0.3	Vss	V ss + 0.3	V
Output minimum voltage 5	V _{AOL5}		$\label{eq:VDD} \begin{split} V_{\text{DD}} &= V_{\text{CC}} = 5.0 \text{ V} \\ V_{\text{SS}} &= GND = 0.0 \text{ V} \\ I_{\text{sink}} &= 1.0 \text{ mA} \\ \text{When digital setting is #00.} \end{split}$	Vss		V ss + 0.3	V

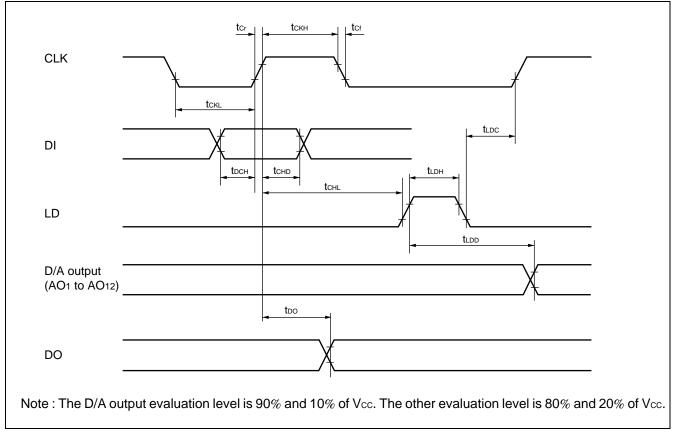

(Continued)

(Continued)

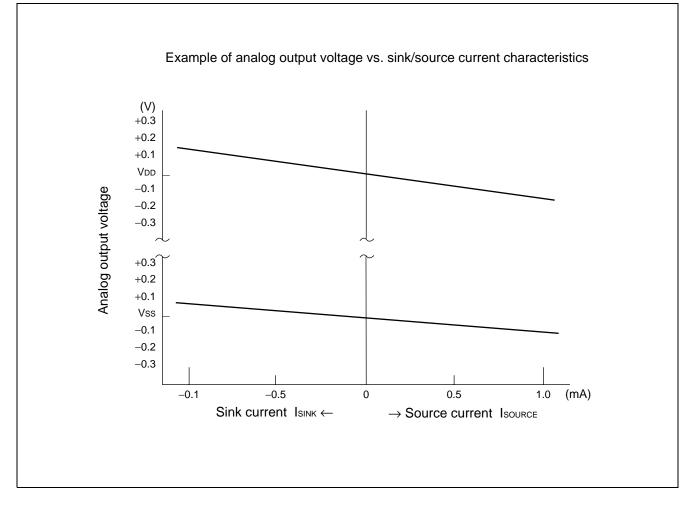
Symbol	Din norse	Conditions		Value		110:4
Symbol	Pin name	Conditions	Min	Тур	Max	Unit
VAOH1		No load, $V_{DD} = V_{CC}$ When digital setting is #FF.	$V_{\text{DD}} - 0.1$		V dd	V
V _{AOH2}		$I_{source} = 500 \ \mu A$ When digital setting is #FF.	$V_{\text{DD}} - 0.2$		V dd	V
Vаонз	AO 1	$I_{sink} = 500 \ \mu A$ When digital setting is #FF.	$V_{\text{DD}} - 0.2$	V dd	V DD + 0.2	V
Vaoh4	to AO 12	$\label{eq:VDD} \begin{array}{l} V_{DD} = V_{CC} = 5.0 \ V \\ V_{SS} = GND = 0.0 \ V \\ I_{source} = 1.0 \ mA \\ When digital setting is \#FF. \end{array}$	Vdd - 0.3		V dd	V
Vaoh5		$\label{eq:VDD} \begin{array}{l} V_{DD} = V_{CC} = 5.0 \ V \\ V_{SS} = GND = 0.0 \ V \\ I_{\text{sink}} = 1.0 \ \text{mA} \\ When \ \text{digital setting is } \#\text{FF}. \end{array}$	Vdd - 0.3	V dd	V dd + 0.3	V
	VAOH1 VAOH2 VAOH3 VAOH4	VAOH2 VAOH3 VAOH4 AO 1 to AO 12	VAOH1No load, $V_{DD} = V_{CC}$ When digital setting is #FF. V_{AOH2} Isource = 500 μ A When digital setting is #FF. V_{AOH3} AO 1 to AO 12Isink = 500 μ A When digital setting is #FF. V_{AOH4} AO 1 to AO 12VDD = V_{CC} = 5.0 V V_{SS} = GND = 0.0 V Isource = 1.0 mA When digital setting is #FF. V_{AOH4} VAOH4VDD = V_{CC} = 5.0 V V_{SS} = GND = 0.0 V Isource = 1.0 mA When digital setting is #FF. V_{AOH5} VDD = V_{CC} = 5.0 V V_{SS} = GND = 0.0 V Isink = 1.0 mA	VNo <td>SymbolPin nameConditionsV_{AOH1}No load, $V_{DD} = V_{CC}$ When digital setting is #FF.$V_{DD} - 0.1$$V_{AOH2}$Isource = 500 μA When digital setting is #FF.$V_{DD} - 0.2$$V_{AOH3}$AO 1 to AO 12Isink = 500 μA When digital setting is #FF.$V_{DD} - 0.2$$V_{AOH4}$AO 1 to AO 12V_{DD} = V_{CC} = 5.0 V V_{SS} = GND = 0.0 V Isource = 1.0 mA When digital setting is #FF.$V_{DD} - 0.2$$V_{DD}$$V_{AOH4}$$V_{DD} = V_{CC} = 5.0 V$ V_{SS} = GND = 0.0 V Isource = 1.0 mA When digital setting is #FF.$V_{DD} - 0.3$$V_{AOH5}$$V_{DD} = V_{CC} = 5.0 V$ V_{SS} = GND = 0.0 V Isink = 1.0 mA$V_{DD} - 0.3$$V_{DD}$</td> <td>SymbolPin nameConditionsMinTypMax$V_{AOH1}$$V_{AOH1}$$V_{AOH2}$No load, $V_{DD} = V_{CC}$ When digital setting is #FF.$V_{DD} - 0.1$$$$V_{DD}$$V_{AOH2}$$V_{AOH2}$$V_{AOH3}$$I_{source} = 500 \ \mu A$ When digital setting is #FF.$V_{DD} - 0.2$$$$V_{DD}$$V_{AOH3}$$AO_1$ to $AO_{12}$$I_{sink} = 500 \ \mu A$ When digital setting is #FF.$V_{DD} - 0.2$$V_{DD}$$V_{DD} + 0.2$$V_{AOH4}$$AO_1$ to $AO_{12}$$V_{DD} = V_{CC} = 5.0 \ V$ $V_{SS} = GND = 0.0 \ V$ $I_{source} = 1.0 \ m A$ When digital setting is #FF.$V_{DD} - 0.3$$$$V_{DD}$$V_{AOH5}$$V_{DD} = V_{CC} = 5.0 \ V$ $V_{SS} = GND = 0.0 \ V$ $I_{sink} = 1.0 \ m A$$V_{DD} - 0.3$$V_{DD}$$V_{DD} + 0.3$</td>	SymbolPin nameConditions V_{AOH1} No load, $V_{DD} = V_{CC}$ When digital setting is #FF. $V_{DD} - 0.1$ V_{AOH2} Isource = 500 μ A When digital setting is #FF. $V_{DD} - 0.2$ V_{AOH3} AO 1 to AO 12Isink = 500 μ A When digital setting is #FF. $V_{DD} - 0.2$ V_{AOH4} AO 1 to AO 12V_{DD} = V_{CC} = 5.0 V V_{SS} = GND = 0.0 V Isource = 1.0 mA When digital setting is #FF. $V_{DD} - 0.2$ V_{DD} V_{AOH4} $V_{DD} = V_{CC} = 5.0 V$ V_{SS} = GND = 0.0 V Isource = 1.0 mA When digital setting is #FF. $V_{DD} - 0.3$ V_{AOH5} $V_{DD} = V_{CC} = 5.0 V$ V_{SS} = GND = 0.0 V Isink = 1.0 mA $V_{DD} - 0.3$ V_{DD}	SymbolPin nameConditionsMinTypMax V_{AOH1} V_{AOH1} V_{AOH2} No load, $V_{DD} = V_{CC}$ When digital setting is #FF. $V_{DD} - 0.1$ $$ V_{DD} V_{AOH2} V_{AOH2} V_{AOH3} $I_{source} = 500 \ \mu A$ When digital setting is #FF. $V_{DD} - 0.2$ $$ V_{DD} V_{AOH3} AO_1 to AO_{12} $I_{sink} = 500 \ \mu A$ When digital setting is #FF. $V_{DD} - 0.2$ V_{DD} $V_{DD} + 0.2$ V_{AOH4} AO_1 to AO_{12} $V_{DD} = V_{CC} = 5.0 \ V$ $V_{SS} = GND = 0.0 \ V$ $I_{source} = 1.0 \ m A$ When digital setting is #FF. $V_{DD} - 0.3$ $$ V_{DD} V_{AOH5} $V_{DD} = V_{CC} = 5.0 \ V$ $V_{SS} = GND = 0.0 \ V$ $I_{sink} = 1.0 \ m A$ $V_{DD} - 0.3$ V_{DD} $V_{DD} + 0.3$

 $(V_{DD}, V_{CC} = +5 V \pm 10\% (V_{CC} \ge V_{DD}), GND, V_{SS} = 0 V, Ta = -40 \degree C to + 85 \degree C)$

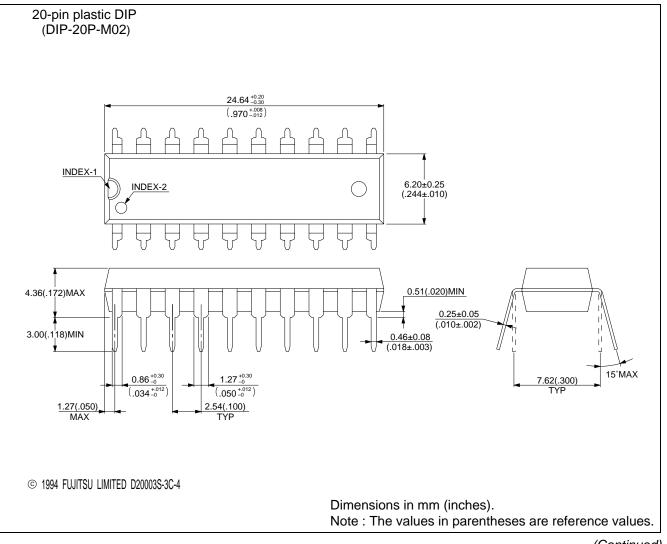

and "FF". Differential linearity error : The error from the ideal increment given when the digital value is incremented by one bit.

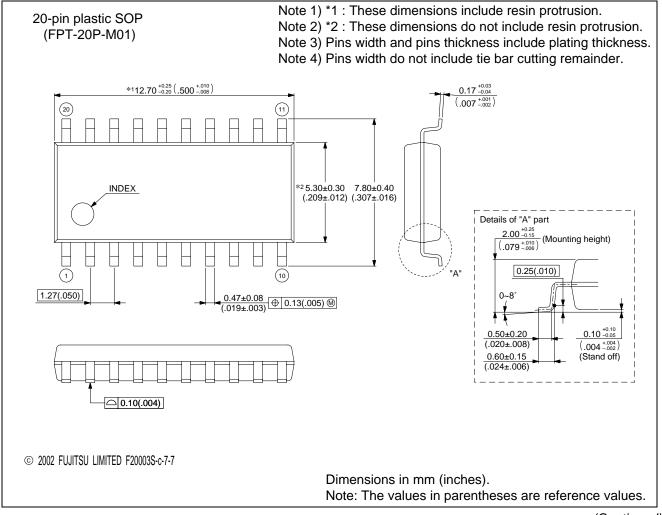

2. AC Characteristics

	$(V_{DD}, V_{CC} = +$	$5~V\pm10\%~(V_{CC}\geq V_{DD})$, GND, $'$	Vss = 0 V, Ta	$n = -40 ^{\circ}\mathrm{C} \mathrm{tc}$	→ + 85 °C)
Parameter	Symbol	Conditions	Va	lue	Unit
rarameter	Symbol	Conditions	Min	Max	Onic
"L" level clock pulse width	tск∟	—	200		
"H" level clock pulse width	tскн	—	200		
Clock rising time Clock falling time	tcr tcf			200	
Data setup time	tdcн	—	30		
Data hold time	tснр	—	60		ns
Load setup time	tсн∟	—	200		
Load hold time	t LDC	—	100		
"H" level load pulse width	t ldh	—	100		
Data output delay time	tdo	Refer to "Load condition (1) ".	70	350	
D/A output settling time	tldd	Refer to "Load condition (2) ".		20	μs

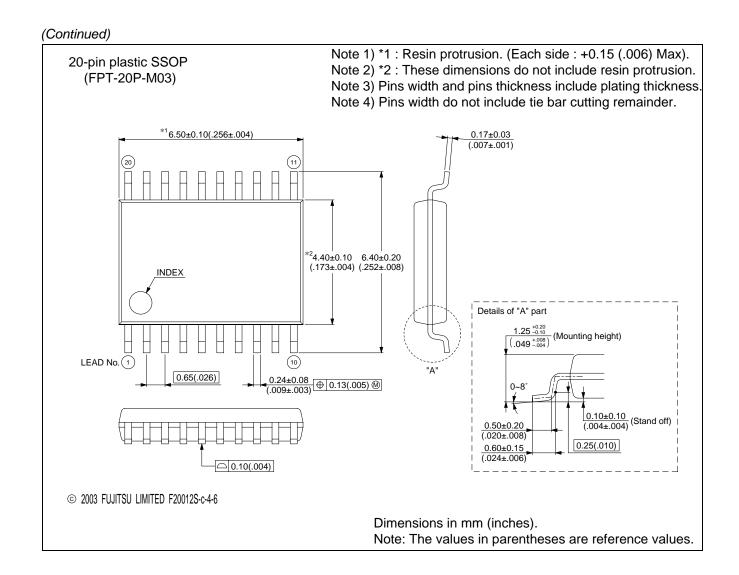

Load condition

Input/output timing


■ EXAMPLE CHARACTERISTICS



■ ORDERING INFORMATION


Part No.	Package	Remarks
MB88346BP	20-pin plastic DIP (DIP-20P-M02)	
MB88346BPF	20-pin plastic SOP (FPT-20P-M01)	
MB88346BPFV	20-pin plastic SSOP (FPT-20P-M03)	

■ PACKAGE DIMENSIONS

(Continued)

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0503 © 2005 FUJITSU LIMITED Printed in Japan