

Introducing SiC Schottky Diode QFN Package

2012

Downloaded from Elcodis.com electronic components distributor

Agenda

- Introduction to Cree Power
- Schottky Diode QFN Package
- Benefits in LED and Lighting Applications
- Reference Design Test Data

Copyright © 2012, Cree, Inc.

Cree businesses

Power and RF Components

Revolutionizing the power semiconductors

Copyright © 2011, Cree, Inc.

Cree Has Shipped 200 GVA of SiC Diodes

- SiC diodes have significant penetration in applications where efficiency is essential
 - Servers fro data centers
 - Telecom power supplies
 - Solar inverters
- SiC MOSFETs enable even greater efficiency improvements

Copyright © 2012, Cree, Inc.

Cree SiC Diodes: Proven Quality and Reliability

Cree SiC Diode Field Failure Rate Data since Jan. 2004

Product	Device Hours	FIT (fails/billion hrs)
CSDxxx60	205,000,000,000	0.16
C3Dxxx60	81,000,000,000	0.09
C2Dxx120	46,000,000,000	1.35
Total	332,000,000,000	0.31

More than 10X lower than typical silicon

Typical FIT rate for Si PiN diodes is ~ 5

300 billion device hours in the field with an industryleading FIT rate of only 0.31

pg. 7

Copyright © 2012, Cree, Inc.

New "QFN" Package - C3D1P7060Q

Key Electrical Parameters

- Forward Rated Current: 1.7A @ T_c < 150 °C</p>
- Reverse Blocking Voltage: 600V
- Forward Voltage: 1.7V @ 100°C
- ➤ Total Charge Q_c : 5.6 nC

Package

- Smallest SiC package in the market
- > 3.3 x 3.3 x 1mm QFN Surface Mount

Benefits

- Higher driver efficiency = Higher Lm/W
- Lower thermals for diode, surrounding components

pg. 8

Smaller footprint

Copyright © 2012, Cree, Inc.

Why Cree Schottky Diodes?

Cree C3D1P7060Q in Light Bulb applications

- Cree's new C3D1P7060Q well suited for new Non-Isolated lighting applications
- Industry's smallest SiC package well suited for space constrained application such as Lighting
- Improved Switching behavior reduces thermals and stress on MOSFET

Isolated Vs Non-Isolated LED Lighting

Why use a SiC Schottky Diode?

Simplified Circuit operation

MOSFET Q is turned on, current ramps up through inductor and LED string

MOSFET Q is turned off and the freewheeling diode D conducts the current the current through the inductor and LED string

Any reverse recover current from diode will flow into the MOSFET.

Copyright © 2012, Cree, Inc.

7W Non-Isolated LED Reference design

55mmx28mmx13mm

Specification Items	Min	Typical	Мах	
Input AC Voltage	180Vac	220Vac	264Vac	
Output Voltage Tolerance	20Vdc	26Vdc	28Vdc	
Output current per string	250mA	270mA	285mA	
Output current tolerance			+-5%	
Efficiency with Cree SiC		82%		
Power Factor	0.8	0.85		
Controller	LM3445			
Dimming	Phase cutting dimmable			
LED	Cree XPE 10pcs [100mA to 400mA]			
yright © 2012, Cree, Inc.	pg. 12			

Copyright © 2012, Cree, Inc.

7W Cree Reference Design - Schematic

• Driver Spec

- > Input: 240Vac
- > Output: 25Vdc, 270mA (7W) 40W Incandescent Replacement
- Switching Freq: 125kHz
- Driver IC: TI/National LM3445

Copyright © 2012, Cree, Inc.

7W Cree Reference Design - Test Data

Efficiency Comparison

~4% efficiency improvement

7W Cree Reference Design - Test Data

Efficiency Comparison at different load conditions

Copyright © 2012, Cree, Inc. pg. 15

7W Cree Reference Design - Test Data (cont.)

MOSFET and Diode Temperature Comparison

- 12°C cooler on Diode
- 17°C cooler on MOSFET

Copyright © 2012, Cree, Inc.

7W Cree Reference Design - Test Data (cont.)

Cree I_{ds} Max 698mA

ON Semi I_{ds} Max 1.32A

 Lower MOSFET stress since less reverse recovery current from diode

Test Data Summary

C3D1P7060Q Schottky diode enables highest efficiency solutions

- 1. CCM with low-side BUCK converter
- 2. High output current LED>300mA

C3D1P7060Q Schottky diode brings system benefits

- 1. Small 3.3 x 3.3 mm footprint saves space
- 2. Efficiency improves 4-5%
- 3. Thermal reduction 15-20C can shrink heatsink, prolong life of caps
- 4. Reduce MOSFET current rating (lower cost part)

Copyright © 2012, Cree, Inc.

Conclusion

C3D1P7060Q Schottky diode enables higher Lm/W

- 1. Best fit topology
 - CCM with low-side BUCK converter
 - High output current LED>300mA

System benefits

- 1. Space savings/higher density
 - Small 3.3 x 3.3 mm footprint
- 2. Efficiency improves 2-5%
- 3. Improved reliability
 - SiC more reliable than Si
 - Thermal reduction 15-20C can shrink heatsink, prolong life of caps
 - Reduce MOSFET current rating (lower cost part)

Copyright © 2012, Cree, Inc.