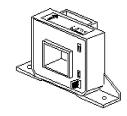


Current Transducer HAT 200..1500-S


For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

 $I_{PN} = 200..1500 \text{ A}$ $V_{OUT} = \pm 4 \text{ V}$

Elec	ctrical data		
Primary no	minal Primary current	Type	
r.m.s. current measuring range 4)			
I _{PN} (A)	I _P (A)		
200	± 600	HAT 200	-S
400	± 1200	HAT 400-S	
500	± 1500	HAT 500-S	
600	± 1800	HAT 600-S	
750	± 2250	HAT 750-S	
800	± 2400	HAT 800-S HAT 1000-S	
1000 1200	± 3000 ± 3000	HAT 1200-S	
1500	± 3000 ± 3000	HAT 150	
V _c	Supply voltage (± 5 %) 4)	± 15	V
I _c	Current consumption	± 15	mΑ
R _{IS}	Isolation resistance @ 500 VDC	> 1000	$M\Omega$
\mathbf{V}_{OUT}	Output voltage @ $\pm I_{PN}$, $R_L = 10 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$	± 4	V
R_{OUT}	Output internal resistance	100	Ω
R	Load resistance	> 10	$k\Omega$
Accu	racy-Dynamic performance data		
X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$ (without offset)	< ± 1	% of I _{PN}
$\mathbf{e}_{\scriptscriptstyle\! L}$	Linearity error 1) $(0 \pm I_{PN})$	< ± 1	% of I _{PN}
V _{OE}	Electrical offset voltage, $T_A = 25^{\circ}C$	$< \pm 20$	mV
V _{OH}	Hysteresis offset voltage $(\mathbf{I}_p = 0)$;		
OH	after an excursion of 1 x I _{PN}	< ± 10	mV
\mathbf{V}_{OT}	Thermal drift of V _{OF}	< ± 1	mV/K
TC e	Thermal drift of the gain (% of reading)	< ± 0.1	%/K
t,	Response time @ 90% of Ip	< 5	μs
f	Frequency bandwidth ²⁾ (- 3 dB)	DC 25	5 kHz
Gen	eral data		
T _A	Ambient operating temperature	- 10 +	80 °C
T _s	Ambient storage temperature HAT 200-S, HAT 5001500-S		
- S	HAT 400-S	- 25 +	
m	Mass	300	g
-	UL94 classification	V0	9

Features

- · Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 3000 V
- Low power consumption
- Extended measuring range (3 x I_{PN})
- Insulated plastic case recognized according to UL 94-V0

Advantages

- · Easy mounting
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

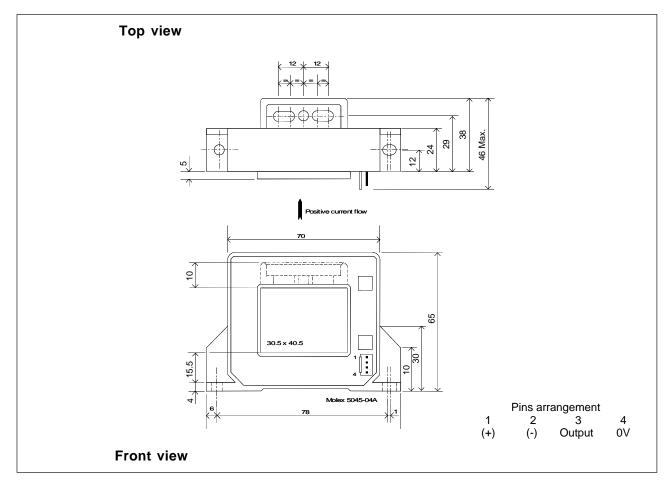
- DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- · Battery supplied applications
- Power supplies for welding applications

Notes: 1) Linearity data exclude the electrical offset.

- ²⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency.
- ³⁾ Please consult characterisation report for more technical details and application advice.
- ⁴⁾ Operating at ±12V ≤ Vc < ±15V will reduce the measuring range.

051011/9 Page 1/3

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.


Current Transducer HAT 200..1500-S

Isola	ation characteristics		
	Rated Voltage with IEC 61010-1 standards and following conditions - Reinforced insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field	1000	V
V _d dCp dCl CTI	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn Creepage distance Clearance distance Comparative Tracking Index (Group IIIa)	3 > 11 > 11 275	kV m m m m

Notes :

Dimensions HAT 200..1500-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 1 mm

• Transducer fastening By base-plate or on bus bar with M4

screws.

All slots Ø 4.5 mm

• Connection of secondary Molex 5045-04A

• I_s is positive when I_p flows in the direction of the arrow.

• Temperature of the primary conductor should not exceed

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used. Main supply must be able to be disconnected.

051011/9

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

Page 3/3

LEM Industrial

www.lem.com

Remarks

100°C.