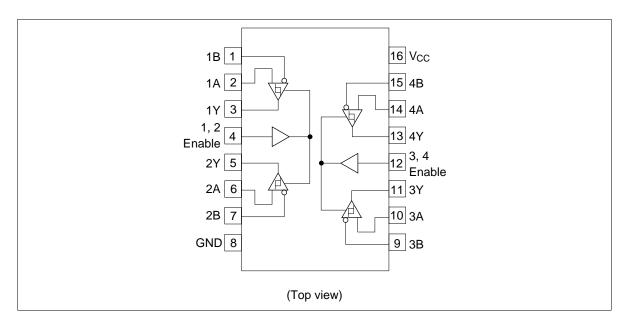
Quadruple Differential Line Receiver With 3 State Outputs

HITACHI

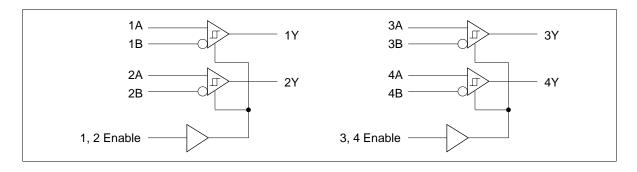
ADE-205-593 (Z) 1st. Edition Dec. 2000

Description

The HD75175 is a differential line receiver with three state outputs designed to meet the requirements of EIA standards RS-422A, RS-423A, RS-485 and several CCITT recommendations. The device features input sensitivity of ± 200 mV over a common mode input voltage range of -12 V to +12 V. Each receiver features two active high enables, each common to two receivers.


Function Table (Each Receiver)

Differential Inputs A-B	Enable	Output
$V_{ID} \ge 0.2 \text{ V}$	Н	Н
$-0.2 \text{ V} < \text{V}_{ID} < 0.2 \text{ V}$	Н	?
$V_{ID} \leq -0.2 \text{ V}$	Н	L
X	L	Z


H: High LevelL: Low LevelX: IrrelevantP: IndeterminateP: high impedance

Pin Arrangement

Logic Diagram

Absolute Maximum Ratings $(Ta = 25^{\circ}C)$

Item	Symbol		Rating	Unit
Supply Voltage	V _{cc}		7	V
Input Voltage, A or B Inputs	V _{IN}		±25	V
Differential Input Voltage*2	V _{ID}		±25	V
Enable Input Voltage	V _{IE}		7	V
Low Level Output Current	I _{OL}		50	mA
Power Dissipation	P _T *1	DP	1150	mW
		FP	785	
Operating Temperature Range	Topr		0 to 70	°C
Storage Temperature Range	Tstg		-65 to +150	°C

Note: 1. The above date were taken by the ΔV_{BE} method, mounting on a glass epoxy board ($40 \times 40 \times 1.6$ mm) of 10% wiring density.

- 2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.
- 3. The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

Recommended Operating Conditions

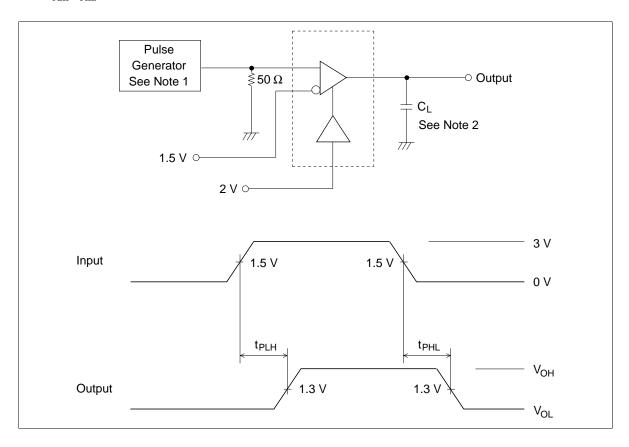
Item	Symbol	Min	Тур	Max	Unit	
Supply Voltage	V_{cc}	4.75	5.00	5.25	V	
Common Mode Input Voltage	V _{IC}	_	_	±12	V	
Differential Input Voltage	V _{ID}	_	_	±12	V	
Output Current	I _{OH}	_	_	-400	μΑ	
	I _{OL}	_	_	16	mA	
Operating Temperature	Topr	0	_	70	°C	

DC Electrical Characteristics (Ta = 0 to 70° C)

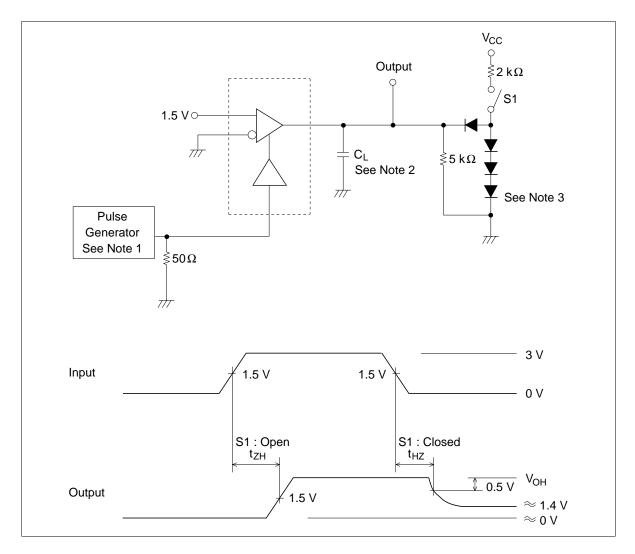
_	_	0.2	V	$V_0 = 2.7 \text{ V}, I_0 = -0.4 \text{ m}$	A
-0.2	_	_	V	$V_{\rm O} = 0.5 \text{ V}, I_{\rm O} = 16 \text{ mA}$	
V _T —	50	_	mV		
2	_	_	V		
_	_	8.0	_		
_	_	-1.5	V	II = −18 mA	
2.7	_	_	V	$V_{ID} = 200 \text{ mV}, I_{OH} = -400 \text{ mV}$	00 μΑ
_	_	0.45	V	$V_{ID} = -200 \text{ mV}, I_{OL} = 8 \text{ m}$	mA
_	_	0.5	=	I _{OL} = 16 mA	
_	_	-20	μΑ	V ₀ = 0.4 V	
_	_	+20		V _o = 2.4 V	
_	_	1	mΑ	Other input at 0 V*4	V ₁ = 12 V
_	_	-0.8	=		V ₁ = -7 V
_	_	20	μΑ	I _{IH} = 2.7 V	
_	_	-100	μΑ	I _{IL} = 0.4 V	
12	_	_	kΩ		
-15	_	 85	mA		
_	_	70	mA		
	V _T - 2	V _T - 50 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.2 - V V _T - 50 - mV 2 V - 0.8 1.5 V 2.7 - V - 0.45 V 0.5 20 μA +20 1 mA 0.8 20 μA 100 μA 12 - κΩ -1585 mA	-0.2 — $-$ V $V_{O} = 0.5$ V, $I_{O} = 16$ mA V_{T}^{-} — 50 — mV V_{D}^{-} — 0.8 — $-$ 0.8 — $-$ 1.5 V $II = -18$ mA $V_{D} = 200$ mV, $I_{OH} = -40$ — $-$ 0.45 V $V_{ID} = -200$ mV, $I_{OL} = 8$ M $V_{O} = 16$ mA $V_{O} = 0.4$ V $V_{O} = 2.4$ V $V_{O} = 2.$

Notes: 1. All typical values are at $V_{cc} = 5 \text{ V}$, $Ta = 25^{\circ}\text{C}$.

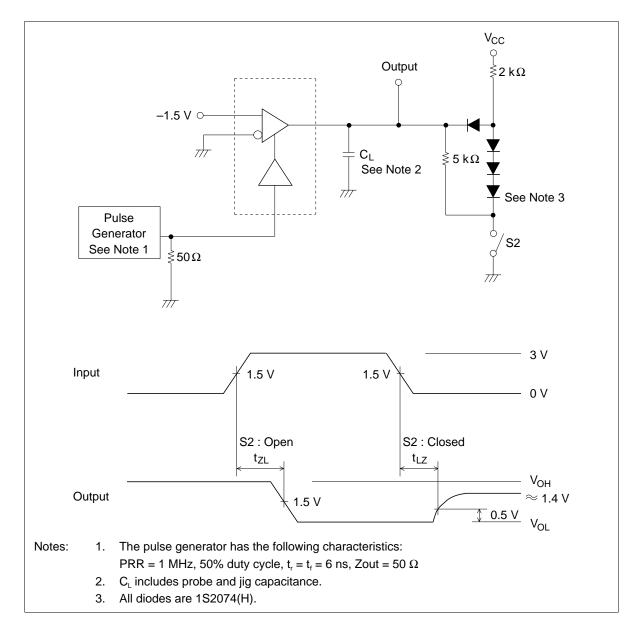
- 2. Hysteresis is the difference between the positive going input threshold voltage V_T^+ and the negative going input threshold voltage V_T^- .
- 3. Not more than one output should be shorted at a time.
- 4. Refer to EIA standards RS-422A and RS-485 for exact conditions.

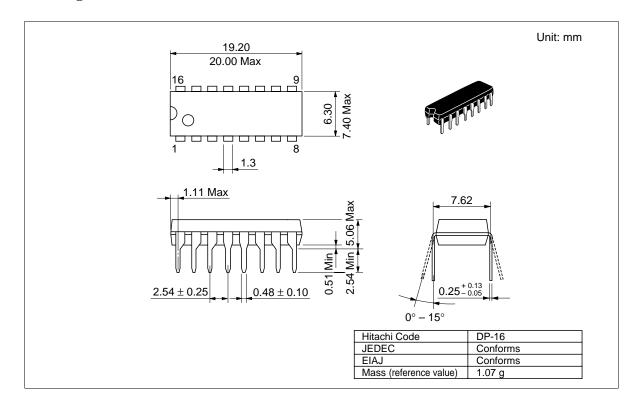

Switching Characteristics ($V_{CC} = 5 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}$)

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Propagation Delay Time	t _{PLH}	_	20	35	ns	C _L = 15 pF
	t _{PHL}	_	22	35		
Output Enable Time	t _{zH}	_	13	30		C _L = 15 pF
	t _{zL}	_	19	30		
Output Disable Time	t _{HZ}	_	26	35		C _L = 5 pF
	t _{LZ}	_	25	35		


HITACHI

Switching Time Test Method


1. t_{PLH} , t_{PHL}


$2. \quad t_{ZH}, \, t_{HZ}$

3. t_{ZL} , t_{LZ}

Package Dimensions

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica : http://semiconductor.hitachi.com/
Europe : http://www.hitachi-eu.com/hel/ecg
Asia : http://sicapac.hitachi-asia.com
Japan : http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc.
179 East Tasman Drive,
San Jose, CA 95134
Tel: <1> (408) 433-1990
Fax: <1> (408) 433-0223
Tel: <49>
Tel: <49>
Tel: <49>
Tel: <49

Hitachi Europe GmbH Electronic Components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Barkshire SL6 8VA United Kingg

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160

Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel: <65>-538-6533/538-8577
Fax: <65>-538-6933/538-3877
URL: http://www.hitachi.com.so

Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building,

Taipei (105), Taiwan Tel: <886--(2)-2718-3666 Fax: <886--(2)-2718-8180 Telex: 23222 HAS-TP URL: http://www.hitachi.com.tw

Copyright © Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.

Hitachi Asia (Hong Kong) Ltd.

7/F., North Tower.

Hong Kong

World Finance Centre,

Harbour City, Canton Road

Tsim Sha Tsui, Kowloon,

Tel: <852>-(2)-735-9218 Fax: <852>-(2)-730-0281

URL: http://www.hitachi.com.hk

Group III (Electronic Components)

HITACHI

9

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.