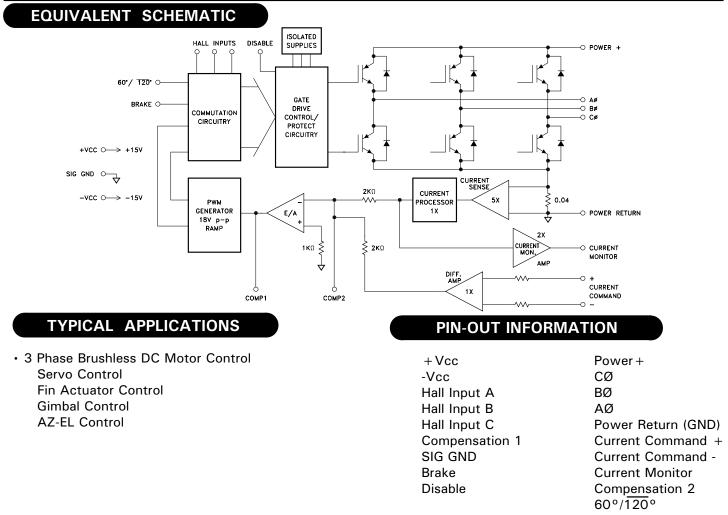
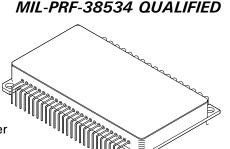


M.S.KENNEDY CORP.

10 AMP, 500V, 3 PHASE IGBT BRUSHLESS MOTOR CONTROLLER

(315) 701-6751


4707 Dey Road Liverpool, N.Y. 13088


FEATURES:

- 500 Volt Motor Supply Voltage
- 10 Amp Output Switch Capability
- 100% Duty Cycle High Side Conduction Capable
- Shoot-Through/Cross Conduction Protection
- · Hall Sensing and Commutation Circuitry on Board
- "Real" Four Quadrant Torque Control Capability
- · Good Accuracy Around the Null Torque Point
- Isolated Package Design for High Voltage Isolation Plus Good Thermal Transfer
- 60°/ 120° Phasing Selectable

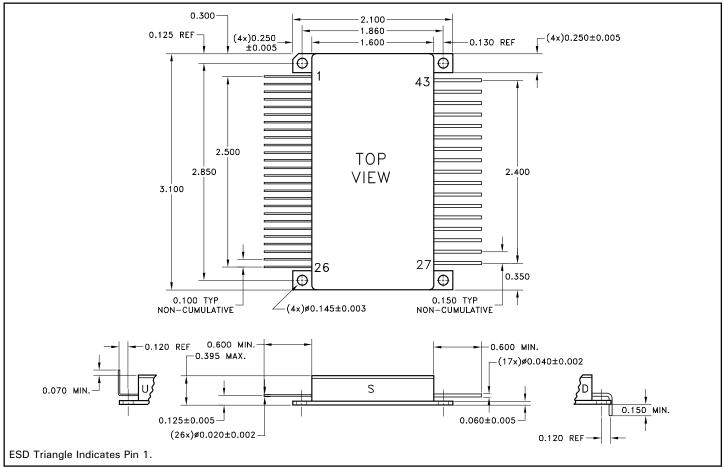
DESCRIPTION:

The MSK 4370 is a complete 3 Phase IGBT Bridge Brushless Motor Control System in an electrically isolated hermetic package. The hybrid is capable of 10 amps of output current and 500 volts of DC bus voltage. It has the normal features for protecting the bridge. Included is all the bridge drive circuitry, hall sensing circuitry, commutation circuitry and all the current sensing and analog circuitry necessary for closed loop current mode (torque) control. When PWM'ing, the transistors are modulated in locked anti-phase mode for the tightest control and the most bandwidth. Provisions for applying different compensation schemes are included. The MSK 4370 has good thermal conductivity of the IGBT's due to isolated substrate/package design that allows direct heat sinking of the hybrid without insulators. The anti-parallel commutation diodes are ultrafast recovery types for high efficiency/low switching losses.

ABSOLUTE MAXIMUM RATINGS

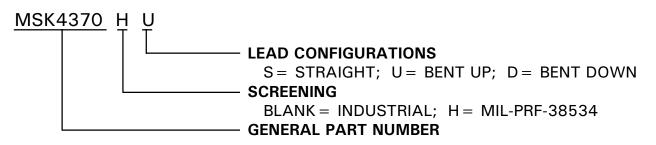
V +	High Voltage Supply
VIN	Current Command Input
+Vcc	
-Vcc	
lout	Continuous Output Current
РК	Peak Output Current

θ_{JC}	Thermal Resistance
Тsт	Storage Temperature Range65°C to +150°C
Tld	Lead Temperature Range+300°C
	(10 Seconds)
Tc	Case Operating Temperature55°C to +125°C


TJ Junction Temperature + 150°C

All Ratings: Tc = + 25 °C Unless Otherwise Specified

ELECTRICAL SPECIFICATIONS


Deveneder	Test Conditions		MSK 4370		
Parameter		Min.	Тур.	Max.	Units
POWER SUPPLY CURRENT					
+ Vcc	+ Vcc $=$ $+$ 15V	TBD	TBD	TBD	mA
-VccVcc 15V		TBD	TBD	TBD	mA
PWM					
Free Running Frequency	No Clock Sync	20	22	24	KHz
CONTROL					
Transconductance	±8 Amps Output	1.9	2	2.1	V/amp
Current Monitor	±8 Amps Output	0.9	1	1.1	V/amp
Output Offset	@ 0 Volts Command	-	± 5.0	-	mAmp
HALL INPUTS					
Low Level Input Voltage		-	-	0.8	Volts
High Level Input Voltage		3.0	-	-	Volts
ERROR AMP					
Input Voltage Range		±11	±12	-	Volts
Slew Rate		6.5	8	-	V/µSec
Output Voltage Swing		±12	±13	-	Volts
Gain Bandwidth Product		-	6.5	-	MHz
Large Signal Voltage Gain		175	275	-	V/mV
OUTPUT					
Rise Time		-	2	-	μSec
Fall Time		-	2	-	μSec
Breakdown Voltage	@ 50µA	500	-	-	Volts
Leakage Current	@ 500V	-	-	50	µAmps
Voltage Drop Across Bridge	@ 10 Amps	-	-	5	Volts
Diode Forward Voltage	@ 10 Amps	-	-	1.5	Volts
trr	$IF = 10 Amps, di/dt = 100A/\mu S$	-	-	60	nSec
Dead Time		-	2	-	μSec

MECHANICAL SPECIFICATIONS

NOTE: ALL DIMENSIONS ARE $\pm\,0.010$ INCHES UNLESS OTHERWISE LABELED.

ORDERING INFORMATION

The above example is a Military grade hybrid with leads bent up.

M.S. Kennedy Corp. 4707 Dey Road, Liverpool, New York 13088 Phone (315) 701-6751 FAX (315) 701-6752 www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products.