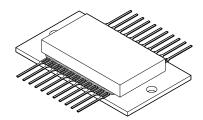


ULTRA HIGH SPEED/VOLTAGE VIDEO AMPLIFIER

1932 SERIES

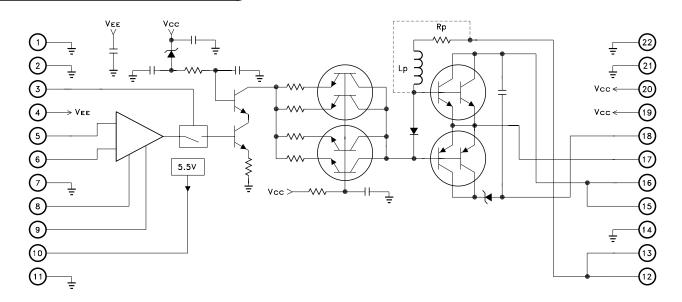

M.S.KENNEDY CORP.

4707 Dev Road Liverpool, N.Y. 13088

(315) 701-6751

FEATURES:

- · Low Cost Complete Amplifier System
- · 100Vpp Output Signal Into 10pF
- Ultra Fast Transition Times: 1.7nS @ 50Vpp
- · User Adjustable Contrast and Brightness
- TTL Compatible Blanking
- · On Board DC Reference Output
- · Customized Versions Readily Available
- · Available with Three Lead Bend Options



MIL-PRF-38534 CERTIFIED

DESCRIPTION:

The MSK 1932 Series of High Speed, High Voltage Video Amplifiers is designed to directly drive the cathode of today's high performance CRT's. The MSK 1932 has user adjustable contrast and brightness levels and also comes with a blanking function. The MSK 1932 can be directly connected to many video sources including RS170, RS343 and high speed video D/A converters. The MSK 1932 is available in four versions for different applications. The MSK 1932-0 has no internal high voltage resistor or inductor allowing the user to dissipate much of the power externally. The MSK 1932-2, MSK 1932-4 and the MSK 1932-6 each have an internal resistor-inductor designed for optimum bandwidth. The MSK 1932-6 has slightly lower bandwidth but can be operated from up to +130V. Each version of the MSK 1932 is packaged in an isolated 22 pin insulated ceramic substrate that can be directly connected to a heat sink using standard mounting techniques. The leads are available straight out, bent up or bent down.

EQUIVALENT SCHEMATIC

VGain

TYPICAL APPLICATIONS

- Helmet Mounted Displays
- · High Resolution RGB Displays
- High Resolution Monochrome Displays
- Automatic Test Equipment
- Medical Monitors
- · CAE/CAD Station Monitors

PIN-OUT INFORMATION

16

9 Voff 17 Output 1 Ground 18 Cath Rtn 2 Ground 10 Vref 19 Vcc 3 Blank Ground 20 Vcc 4 VEE + VHV RES + VHV RES 21 Ground -Input 22 Ground 14 Ground 6 +Input 7 Ground 15 +VHV

+VHV

ABSOLUTE MAXIMUM RATINGS

$+V_{\text{HV}}$	High Voltage Supply (1932-0) + 110V	V_{BLANK}	Blank Input Voltage0.6 to +6V
	(1932-2) + 110V	IREF	Reference Output Current 5mA
	(1932-4) + 75V	Tst	Storage Temperature Range -40°C to +150°C
	(1932-6) + 130V	T_{LD}	Lead Temperature Range 300°C
Vcc	Positive Supply Voltage + 17V		(10 Seconds)
VEE	Negative Supply Voltage12V	ΤJ	Junction Temperature
VIN	Differential Input Voltage 2V	IRP	Current Through Rp 290mA
Vıc	Common Mode Input Voltage ± 2V	Tc	Case Operating Temperature -25°C to +125°C
$V_{\sf GAIN}$	Gain Adjust Input Voltage0.6 to +6V		(All Devices)
V_{OFF}	Offset Adjust Input Voltage -0.6 to +6V		

ELECTRICAL SPECIFICATIONS

Davamatas	Test Conditions (1)		MSK1932-0		MSK1932-2		MSK1932-4		MSK1932-6					
Parameter	rest Conditions ()	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
STATIC														
Quiescent Current (6)	VCM=0V @ +15V	-	75	100	-	75	100	-	75	100	-	75	100	mA
Quiescent Current (6)	VCM = 0V @ -10.5V	-	-75	-100	-	-75	-100	-	-75	-100	-	-75	-100	mA
High Voltage Supply ② ③		30	100	110	30	100	110	30	70	75	30	120	130	V
Thermal Resistance to Case	③ QOUT and QCAS	-	10	13	-	10	13	-	10	13	-	8	12	°C/W
INPUT														
Input Bias Current 6	VCM = 0V	-	± 1	± 50	-	± 1	±50	-	± 1	±50	-	± 1	± 50	μΑ
Diani, Innut Comment (6)	VBLANK = 0.4V	-	500	600	-	500	600	-	500	600	-	500	600	μΑ
Blank Input Current (6)	VBLANK = 2.4V	-	300	400	-	300	400	-	300	400	-	300	400	μΑ
Offset Adjust Input Current	⑦ VOFF = 1V	-	2	10	-	2	10	-	2	10	-	2	10	μΑ
Gain Adjust Input Current (7	VGAIN = 5V	-	2	10	-	2	10	-	2	10	-	2	10	μΑ
Blank Input Pulse Width ③	Normal Operation	30	-	-	30	-	-	30	-	-	30	-	-	nS
Common Mode Rejection Ra	tio ③ VCM = ±0.5V F=10Hz	-	40	-	-	40	-	-	40	-	-	40	-	dB
Input Impedance ③	Either Input F = DC	10K	20K	-	10K	20K	-	10K	20K	-	10K	20K	-	Ω
Input Capacitance ③	Either Input	-	2	-	-	2	-	-	2	-	-	2	-	pF
Blank Mode Input	VBLANK = 2.4V VIN = 0.3V			. 2D			. 2D			. 2D			. 2D	\/
Rejection ΔV ③ ④	$\Delta V = VHV-VOUT$	-	-	±2xRp	_	-	±2xRp	_	-	±2xRp	-	-	±2xRp	mV
Gain Adjust Rejection ΔV ③	ΔVGAIN = 5V	-	-	±10xRp	-	-	±10xRp	-	-	±10xRp	-	-	±10xRp	mV
Power Supply Rejection Ratio	o③+VCC and -VEE=Nom ±5%	25	30	-	25	30	-	25	30	-	25	30	-	dB
Internal Rp 3 4		-	0	-	380	400	420	190	200	210	380	400	420	Ω
ОUТРUТ														
Reference Output Voltage (6 IOUT < 2mA	5.2	5.5	5.8	5.2	5.5	5.8	5.2	5.5	5.8	5.2	5.5	5.8	V
AV/ Blands Made (A) (B) (B)	$\Delta V = VHV-VOUT VOFF = 1V$	0.0	Б.	0.0.	0.0	ъ.	0.0.	-3xRp	D-	2	-3xRp	Б.	0 D	mV
ΔV Blank Mode 4 5 6	VBLANK = 2.4V VGAIN = 5V	-3xRp	Rp	3xRp	-3xRp	p Rp	o 3xRp		Rp	3xRp		Rp	3xRp	
ΔV Min Offset (5) (6) Δ\	/=VHV-VOUT VOFF=0V VGAIN=3V	0	3	6	0	3	6	0	3	6	0	3	10	V
ΔV Max Offset (5) (6)	$\Delta V = VHV-VOUT\ VOFF = 5V$	32	42	52	32	42	52	16	21	26	32	42	52	V
Value of California	VIN = 0.6V F = 10KHz			400										1
Voltage Gain (6)	VGAIN = 3V Both Inputs	72	110	138	72	110	138	36	55	68	72	120 145	V/V	
Output Voltage High 6	VGAIN=3V F=10KHz	95	98	-	95	98	-	65	68	-	115	118	-	V
Output Voltage Low 6	VGAIN = 3V F = 10KHz	-	10	20	-	10	20	-	10	20	-	10	20	V
Transistion Times ⑦	VIN = 0.6V TR = TF < 0.5nS	-	3.5	4.5	-	2.8	4.0	-	1.7	2.5	-	6	8	nS
Linearity Error ③	VGAIN = 4V VOFF = 1V VCM = 0.5V	-	-	± 2	-	-	± 2	-	-	± 2	-	-	± 2	%GS
Gain Linearity ③	VOFF = 1V VIN = 2.0V VCM = 0.5V	-	-	± 2	-	-	± 2	-	-	± 2	-	-	± 2	%
Thermal Distortion ③		-	-	± 2	-	-	± 2	-	-	± 2	-	-	± 2	%GS

NOTES:

- ① +Vcc = +15V, -VeE = -10.5V, VBLANK = VGAIN = VOFF = ±VIN = 0V, CL = 10pF, Tc = 25 °C unless otherwise specified.
 ② VHV = Typical Value for each dash number for all parameters.
 ③ This parameter is quaranteed by design but need not be tested. Typical parameters are representative of actual device performance but are for reference only.
 ④ RP = Internal RP except MSK 1932-0. External value = 400Ω unless otherwise specified for the MSK 1932-0.
- $\begin{tabular}{ll} \hline (5) & \Delta V & \text{is defined as the difference between } + V_{HV} & \text{and the output.} \\ \hline (6) & \text{Parameter is 100\% tested on production devices.} \\ \hline \end{tabular}$
- The parameter is sample tested in accordance with MSK industrial grade quality devices.

APPLICATION NOTES

POWER SUPPLIES

The input stage of the MSK 1932 requires power supplies of +15V and -10.5V for optimum operation. The negative power supply can be increased to -12V if -10.5V is not available, but additional power dissipation will cause the internal temperature to rise. Both low voltage power supplies should be effectively decoupled with tantalum capacitors (at least $4.7\mu\text{F}$) connected as close to the amplifier's pins as possible. The MSK 1932 has internal $0.01\mu\text{F}$ capacitors that also improve high frequency performance. In any case, it is also recommended to put $0.1\mu\text{F}$ decoupling capacitors on the +15V and -10.5V supplies as well.

The high voltage power supply (+VHV) is connected to the amplifier's output stage and must be kept as stable as possible. The internal or external Rp is connected to +VHV and as such, the amplifier's DC output is directly related to the high voltage value. The +VHV pins of the hybrid should be decoupled to ground with as large a capacitor as possible to improve output stability.

SUPPLY SEQUENCING

The power supply sequence is VHV, VCC, VEE followed by the other DC control inputs. If power supply sequencing is not possible, the time difference between each supply should be less than five milliseconds. If the DC control signals are being generated from a low impedance source other than the VREF output, reverse biased diodes should be connected from each input (VGAIN, VOFF) to the VCC pin. This will protect the inputs until VCC is turned on.

VIDEO OUTPUT

When power is first applied and VIN = VGAIN = VOFF = 0V, the output will be practically at the +VHV rail voltage. The output voltage is a function of the value of Rp and also the VGAIN and VOFF DC inputs. The maximum output voltage swing for any of the MSK 1932 variants is determined by Vpp = (250mA) x (Rp). The bandwidth of the amplifier largely depends on both Rp and Lp.

Hybrid pins 12 and 13 are directly connected to Rp. Additional external resistance can be added to reduce power dissipation, but slower transition times will result. If an additional resistor is used, it must be low capacitive and the layout should minimize capacitive coupling to ground (ie: no ground plane under Rp).

The MSK 1932 Series is conservatively specified with low values for Lp which yield about 5% overshoot. Additional peaking can be obtained by using a high self-resonant frequency inductor in series with pins 12 & 13. Since this value of inductance can be very dependent on circuit layout, it is best to determine its value by experimentation. A good starting point is typically $0.47\mu H$ for the MSK 1932-0 and $0.0047\mu H$ for the remaining devices.

If external resistors or inductors are not used, be sure to connect high frequency bypass capacitors directly from pins 12 and 13 to ground for the devices that contain an internal Rp.

VIDEO INPUTS

The video input signals should be kept below $\pm\,2\text{VMAX}$ total, including both common mode offset and signal levels. The input structure of the MSK 1932 was designed for $\pm\,0.714\text{Vpp}$ RS343 signals. If either input is not used it should be connected directly to the analog ground or through a 25Ω resistor to ground if input offset currents are to be minimized.

OUTPUT PROTECTION

The output pin of the MSK 1932 should be protected from transients by connecting reversed biased ultra-low capacitance diodes from the output pin to both $+\,\text{VHV}$ and ground. The output can also be protected from arc voltages by inserting a small value (25-50 Ω) resistor in series with the amplifier. This resistor will reduce system bandwidth along with the load capacitance, but a series inductor can reduce the problem substantially.

VGAIN CONTROL INPUT

The VGAIN control (contrast) input is designed to allow the user to vary the video gain. By simply applying a DC voltage from OV to VREF, the video gain can be linearly adjusted from 0 to 195V/V (MSK 1932-2). The VGAIN input should be connected to the VREF pin through a 5K Ω pot to ground. For convenient stable gain adjustment, a 0.1 μ F bypass capacitor should be connected near the VGAIN input pin to prevent output instability due to noisy sources. Digital gain control can be accomplished by connecting a D/A converter to the VGAIN pin. However, some temperature tracking performance may be lost when using an external DC voltage source other than VREF for gain adjustment. The bandwidth of the VGAIN input is approximately 1MHz.

The overall video output of the MSK 1932 can be characterized using the following expression:

Vpp = Vhv-VouT

$$\label{eq:Vhv-Vout} \begin{split} V\text{HV-Vout} &= (V\text{IN})(V\text{GAIN})(Rp)(0.09)\\ &\quad (\text{or})\\ V\text{oltage Gain} &= V\text{OUT}/V\text{IN} = (V\text{GAIN})(Rp)(0.09) \end{split}$$

Here is a sample calculation for the MSK 1932-2: Given information

• VIN = 0.7V

3

- VGAIN = 1VDC
- Rp = 400Ω (internal)
- •VHV = 100VDC

 $VHV-VOUT = (0.7V)(1V)(400\Omega)(0.09)$

VHV-VOUT = 25.2V Nominal

The expected video output would swing from approximately $\pm 100V$ to $\pm 74.8V$ assuming that Voff=0V. This calculation should be used as a nominal result because the overall gain may vary as much as $\pm 20\%$ due to internal high speed device variations. Changing ambient conditions can also effect the video gain of the amplifier by as much as ± 150 PPM/°C. It is wise to connect all video amplifiers to a common heat sink to maximize thermal tracking when multiple amplifiers are used in applications such as RGB systems. Additionally, only one of the VREF outputs should be shared by all three amplifiers. This voltage should be buffered with a suitable low drift op-amp for best tracking performance.

APPLICATION NOTES CON'T

VOFF CONTROL INPUT

The brightness (output offset) can be linearly adjusted by applying a 0 to VREF DC voltage to the VOFF input pin. The output quiescent voltage range is from approximately $(5\mu\text{A})(\text{Rp})$ to (100mA)(Rp) from +VHV. This control voltage is normally generated by connecting the VOFF control pin to a 5K potentiometer between VREF and ground. The VOFF input pin should be bypassed with a $0.1\mu\text{F}$ capacitor to ground placed as close as possible to the hybrid. This DC voltage can be any stable system source. The bandwidth of the VOFF pin is approximately 1MHz.

Keep hybrid power dissipation in mind when adjusting the output quiescent voltage. Practically all of the voltage is seen across Rp! This power must be taken into account when high Rp currents are used. If the quiescent level is set too close to +VHV, the power dissipation will be minimal but the rise time will suffer slightly. If the quiescent level is set too far from +VHV, the power dissipation will increase dramatically and the output fall time will be limited. The output black level is obviously dependent on system requirements but a little experimentation will strike the optimum balance between power dissipation and bandwidth. Total current through Rp should be limited to less than 290mA when operating from power supplies greater than 90V. The gain adjust alone can set the AC current to 250mA (ie: 250mApp = 100Vpp/400\Omega). Typically, most applications use about 10V from +VHV for a black level.

BLANK INPUT

The video input can be electrically disconnected from the ampliifer by applying a TTL high input to the blank pin. When this occurs, the output will be set to approximately +VHV. The VGAIN and VOFF control pins have little or no effect on the output when it is in blank mode.

When the TTL compatible blank input is not used, the pin must be connected to ground to enable the amplifier. The blank input will float high when left unconnected which will disable the video.

VREF OUTPUT

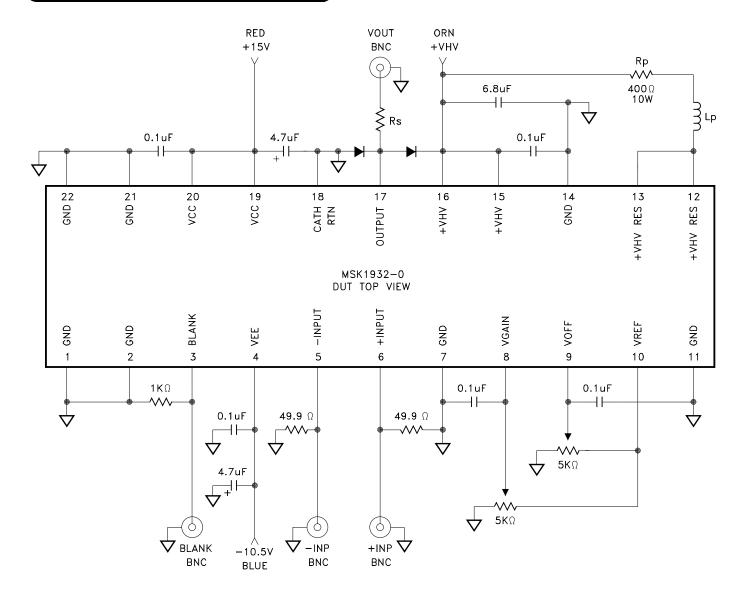
The MSK 1932 has an on board buffered DC zener reference output. The VREF output is nominally 5.5V DC and has full temperature test limits of 5.2V to 5.8V DC. This output is provided for gain and offset adjustment and can source up to 4mA of current.

THERMAL MANAGEMENT

The MSK 1932 package has mounting holes that allow the user to connect the amplifier to a heat sink or chassis. Since the package is electrically isolated from the internal circuitry, mounting insulators are not required or desired for best thermal performance. Use 4 to 6 inch/pounds for mounting the device to the heat sink.

The power dissipation of the amplifier depends mainly on the load requirements, bandwidth, pixel size, black level and the value of Rp. The following table illustrates a few examples:

DEVICE		BLACK WHITE OUTPUT PERCENT OF SIGNAL		NAL	OUTPUT	TOTAL			
TYPE	+ VHV	LEVEL	LEVEL	VOLTAGE	BLANK	BLACK	WHITE	AVE. Pd	AVE. Pd
1932-6	120V	110V	20V	0V	100%	0%	0%	OW	2.5W
1932-6	120V	110V	20V	90V	20%	40%	40%	13.3W	15.7W
1932-4	70V	65V	15V	0V	100%	0%	0%	OW	2.5W
1932-4	70V	65V	15V	50V	20%	40%	40%	8.4W	10.6W

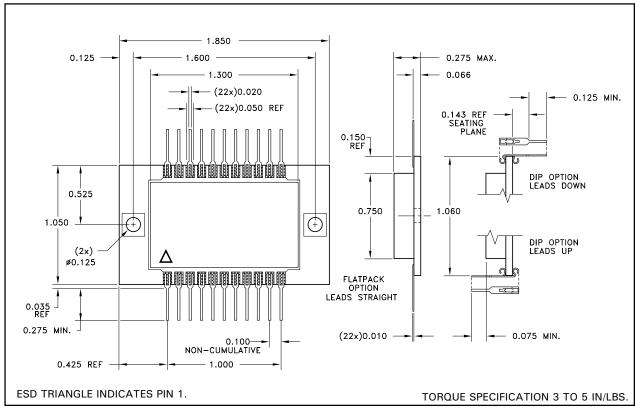

This table does not include power dissipation due to output switching since this is dependent on individual load requirements. The input stage power dissipation is typically 2.5 watts and is essentially independent of output levels.

RESOLUTION TABLE FOR TYPICAL CRT'S

Display Resolution	Maximun Pixel Time	Minimum Pixel Clock Frequency	Required Rise Time at CRT Cathode	Required System Bandwidth (F-3dB)
320 x 200	182nS	5MHz	60nS	6MHz
640 x 350	52nS	19MHz	17nS	20MHz
640 x 480	38nS	26MHz	12.5nS	28MHz
800 x 560	26nS	38MHz	8.6nS	41MHz
1024 x 900	12.6nS	80MHz	4.2nS	84MHz
1024 x 1024	11nS	90MHz	3.7nS	95MHz
1280 x 1024	8.9nS	112MHz	2.9nS	120MHz
1664 x 1200	5.8nS	170MHz	1.9nS	180MHz
2048 x 2048	2.8nS	360MHz	1nS	380MHz
4096 x 3300	860pS	1.2GHz	280pS	1.23GHz

All data assumes retrace time equal to 30% of frame time and a 60Hz refresh rate.

TYPICAL CONNECTION CIRCUIT


The connection circuit shown above is for the MSK 1932-0 evaluation board. The Rp and Lp are external components and must not be located near ground planes if possible. A high quality resistor such as Bradford Electronics P/N FP10-400 is required for optimum response times. Use an inductor with a high self-resonant frequency that can withstand the currents required for the application.

When using the other variants of the MSK 1932, place an additional bypass capacitor on pins 12 and 13 if series (Rp and Lp) components are not utilized. The pin should connect to +VHV with a short low impedance path.

For additional applications information, please contact the factory. Evaluation amplifiers with test boards are readily available for MSK.

NOTES:			

5

ALL DIMENSIONS ARE ±0.010 INCHES UNLESS OTHERWISE LABELED.

ORDERING INFORMATION

PART NUMBER	LEAD OPTION	+ VHV MAX	INTERNAL RP	TYPICAL RISE TIME	SCREENING LEVEL	
MSK 1932S-0	STRAIGHT					
MSK 1932D-0	DOWN	110V	NONE	3.5nS	Industrial	
MSK 1932U-0	UP					
MSK 1932S-2	STRAIGHT					
MSK 1932D-2	DOWN	110V	400Ω	2.8nS	Industrial	
MSK 1932U-2	UP					
MSK 1932S-4	STRAIGHT					
MSK 1932D-4	DOWN	75V	200Ω	1.7nS	Industrial	
MSK 1932U-4	UP					
MSK 1932S-6	STRAIGHT					
MSK 1932D-6	DOWN	130V	400Ω	6.0nS	Industrial	
MSK 1932U-6	UP					

M.S. Kennedy Corp.

4707 Dey Road, Liverpool, New York 13088 Phone (315) 701-6751

FAX (315) 701-6572 www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products.