

Key Features:

- Constant Current Output
- Wide 7V to 60V Input Range
- Efficiency to 97%
- Miniature MiniDIP Case
- IP67 Rated
- Meets EN 60950
- 950 kHrs MTBF
- Digital & Analog Dimming!

Board Mount Models **Available**

MicroPower Direct

292 Page Street Suite D Stoughton, MA 02072 USA

T: (781) 344-8226 F: (781) 344-8481

E: sales@micropowerdirect.com W: www.micropowerdirect.com

Electrical Specifications

Specifications typical @ +25°C, nominal input voltage & rated output current, unless otherwise noted. Specifications subject to change without notice.

Input					
Parameter	Conditions	Min.	Тур.	Max.	Units
Input Voltage Range		7.0		60.0	VDC
Max Input Voltage	0.5 Sec. Max			65.0	VDC
Input Filter	Internal C	apacitor	•		
Output					

Output						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Output Voltage Range	VIN = 60V	2		57	VDC	
Output Current	See Model Selection Guide					
Output Current Accuracy	See Model Selection Guide					
Output Power	See Model Selection Guide					
Efficiency	See Model Selection Guide					
Capacitive Load						
Operating Frequency		20		500	kHz	
Ripple & Noise (20 MHz)	See Model Selection Guide					
Temperature Coefficient				±0.03	%/°C	
Thermal Impedance	Natural Convection			+30	°C/W	
Output Short Circuit	Regulated At Rate	d Outpu	it Currer	nt		
Environmental						

Parameter	Conditions	Min.	Тур.	Max.	Units	
Oneveting Temperature Dance	Ambient	-40	+25	+85	°C	
Operating Temperature Range	Case			+110		
Storage Temperature Range	-40 +125				°C	
Cooling	Free Air Convection					
Humidity	RH, Non-condensing			95	%	
Lead Temperature (Solder)	1.5 mm From Case For 10 Sec			260	°C	
Physical						
Case Size	1.25 x 0.80 x 0.49 Inches (31.75 x 20.32 x 12.45 mm)					

Case Material Non-Conductive Black Plastic (UL94-V0) Weiaht 0.622 Oz (17.7g) Remote On/Off Control Parameter Conditions Max. Units Open or 0.3V < VADJ < 1.25V

DC/DC On DC/DC Off VADJ < 0.15V Remote Pin Drive Current VADJ = 1.25VmA Quiescent Input Current (Shutdown Mode) VIN = 60V100 μΑ **PWM Dimming**

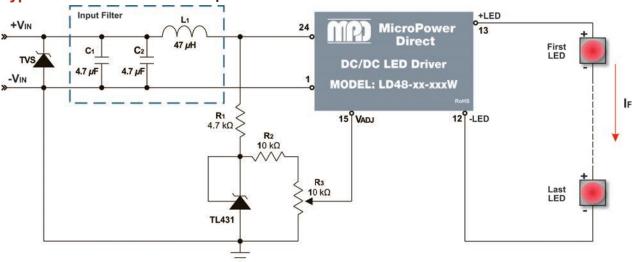
Conditions Max. Units **Parameter** Min. Operation Frequency Recommended Maximum kHz Switch On Time 200 nS Switch Off Time 200 nS **Analog Dimming**

Parameter Conditions Min. Max. Units Input Voltage Range At VADJ Input (Pin 4) 0.3 1.25 **VDC** % Output Current Adjustment 100 25 0.20 0.30 On **VDC** Control Voltage Range Limits Off 0.25 0.15 **Drive Current** VADJ = 1.25V1.0 mΑ

EMC Compliance Radiated/Conducted EN 55015 (CISPR22) EMI/RFI Electrostatic Discharge (ESD) IEC/EN 61000-4-2, -6, -8 Class A RF Field Susceptibility Class A IEC/EN 61000-4-3 Class A Electrical Fast Transients/Bursts On Mains IEC/EN 61000-4-4 **EMS Immunity** EN61547 **Reliability Specifications**

Parameter Conditions Typ. Max. Units MIL HDBK 217F, 25°C, Gnd Benign **MTBF** kHours

www.micropowerdirect.com

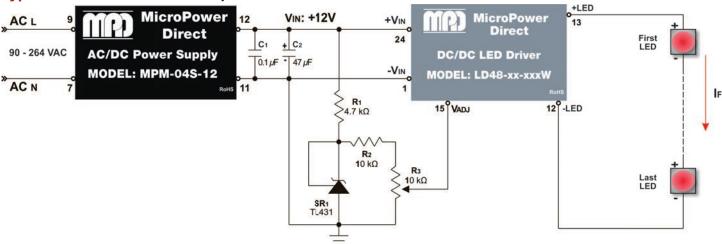

Model Selection Guide

www.micropowerdirect.com

Madel	Input		Output		Maximum	Ripple &	Efficiency (%, Typ)
Model Number	Voltage (VDC)	Voltage (VDC)	Cı	ırrent	Power	Noise	
Humber	Range	Range	Max (mA)	Accuracy (%)	(W)	(mV P-P, Max)	
LD48-09-150W(A)	7.0 - 60.0	2.0 - 57.0	150	±8	9	150	97
LD48-14-250W(A)	7.0 - 60.0	2.0 - 57.0	250	±7	14	200	97
LD48-17-300W(A)	7.0 - 60.0	2.0 - 57.0	300	±6	17	250	97
LD48-20-350W(A)	7.0 - 60.0	2.0 - 57.0	350	±5	20	300	97
LD48-29-500W(A)	7.0 - 60.0	2.0 - 57.0	500	±5	29	400	97
LD48-34-600W(A)	7.0 - 60.0	2.0 - 57.0	600	±5	34	450	97
LD48-40-700W(A)	7.0 - 60.0	2.0 - 57.0	700	±5	40	500	97
LD48-48-1000W(A)	7.0 - 60.0	2.0 - 57.0	1000	±5	48	800	97

- A reversed power source could damage the unit.
 No connection should be made between input ground and the output.
- These are step-down devices, the maximum output open voltage is equal to the input voltage.
- 4. The VabJ input should be left open if not used. Grounding VabJ will shut the unit down. Connecting VabJ to VIN may damage the unit.
- 5. Exceeding the specified maximum output power could cause damage to the unit.

Typical Connection: DC/DC Input



Connection Notes:

To comply with EN61000-4-5, a TVS should be installed before the input filter components. A 3.0SMCJ48A or SMCJ48A is recommended. The TVS max clamping voltage (@max peak pulse current Vc) must be $\leq \pm 60$ V. This will prevent any surge from exceeding the maximum input of the driver (65 VDC). Exceeding the maximum input rating could damage the driver.

The filter shown (C1, C2 and L1) will help to meet conducted emission requirements. With the addition of the filter, the unit should meet the levels of EN 55015.

Typical Connection: AC/DC Input

Connection Notes:

This is a distributed (or two-stage) AC connection. In this configuration, the AC line in (90 to 264 VAC) is connected to the MPM-04S-12, a miniature 4W AC/DC power supply. The MPM-04S-12 provides a tightly regulated 12 VDC output at 333 mA. The 12 VDC output powers the LED driver.


The two stage approach can simplify the safety approval process (most AC/DC power supplies on the market are approved to EN 60950) and may increase design flexibility. Besides the output power, other specifications to consider when selecting the input AC/DC supply would include input range, safety approvals, PFC rating (which may be needed for various system energy ratings) and operating temperature range.

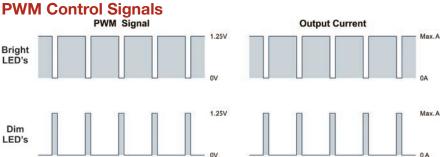
Note: The output current adjustment circuit shown in both connection diagrams is discussed on page 4.

292 Page Street Ste D Stoughton, MA 02072 • TEL: (781) 344-8226 • FAX: (781) 344-8481 • E-Mail: sales@micropowerdirect.com

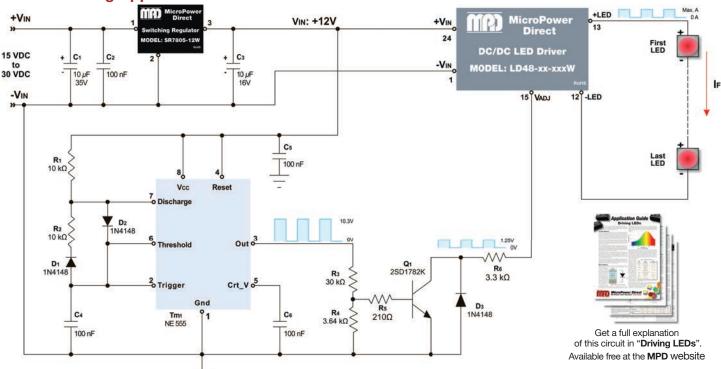
PWM Output Current Control

www.micropowerdirect.com

An LED operates at its maximum efficiency when operated at the rated drive current specified by the manufacturer. Operating an LED at lower than its rated forward current not only decreases the system efficiency; but may cause color (or wavelength) shifting. In illumination applications, this could cause visible changes to lighting.


A preferred method is using pulse width modulation (PWM). As shown at left, the output current is adjusted by applying a PWM signal to the VADJ input. By varying the signal duty cycle the average output current is adjusted up or down. To avoid visible flicker, the PWM signal should be greater than 100 Hz.

For duty cycles (DPWM) between 0 and 1, the output current is derived by the formula:


$I_{NOM} = I_{MAX} X D_{PWM}$

The VADJ input may be driven via an open collector transistor (as shown). The diode and resistor suppress high amplitude negative spikes that may be caused by the drain-source capacitance of the transistor. Negative spikes on the control input of the unit could cause errors in output current or erratic operation.

The Vapu input can also be driven by the open drain output of a microcontroller. Again, any high amplitude negative spikes that may be caused by the drain-source capacitance of the FET must be supressed.

A simple method of achieving digital (or PWM) dimming is by using a 555 timer to apply a series of pulses to the VADJ input, as illustrated above. The 555 operates over a supply voltage range of 4.5 VDC to 15VDC. Here it is connected to the 12 VDC output of the **SR7805** switching regulator (this is also the VIN of the LED driver). Care should be taken to minimize ripple at the Vcc input. Excess ripple could cause timing errors.

The timer is connected for a table (free run) operation. The frequency is set by R1, R2 and C4. The timing capacitor (C4) charges through R1 and D2. When it reaches the level of $^2\!/\!_3$ Vcc, the discharge pin (pin 7) goes low and C4 will discharge through D1 and R2 to the internal discharge transistor. When the C4 voltage drops to $^1\!/\!_3$ Vcc, the discharge pin goes high and C4 begins to charge

again. The formulas for calculating the frequency and duty cycle are included in the MPD application note "*Driving LEDs*".

The diodes (D₁ and D₂) allow duty cycles below 50% to be set. Diode D₁ bypasses R₂ while C₄ is charging. Diode D₂ is optional (but recommended), essentially blocking R₂ during the charge period. Theoretically, this circuit will allow for duty cycles over a range of approximately 5% to 95%. If manual adjustment is desired, a potentiometer may be substituted for R₂ (with some adjustment of the circuit).

The size of C4 is generally not critical, but it should be as low leakage as possible. In order to avoid excessive current flow through the internal discharge transistor, it is recommended that R1 be at least $5~\mathrm{k}\Omega$.

MicroPower Direct • 292 Page Street Ste D Stoughton, MA 02072 • TEL: (781) 344-8226 • FAX: (781) 344-8481 • E-Mail: sales@micropowerdirect.com

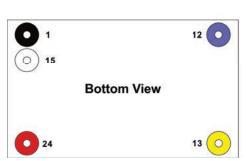
The output current of the unit can also be set by adjusting the voltage level on the VADJ input to a value between 0.3V to 1.25V (lou⊤ will vary from 25% to 100% of rated output current). Care must be taken not to exceed 1.25V on this input, or the driver may be damaged.

A simple analog circuit using two low cost, switching regulators is shown at left. Working from inputs that can range from 15 to 32 VDC, the top regulator (SR1) keeps the input to the LED driver at 12 VDC.

The other regulator (SR2), driven off the same input line maintains the control voltage (for the VADJ input) at 5 VDC. The resister network of R1 and R2 can now be used to set the output current level of the LED driver. This level is equal to:

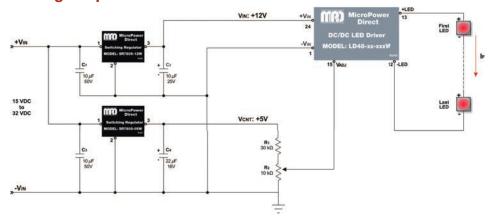
$$V_{ADJ} = \frac{R_2}{R_1 + R_2} X V_{CTRL}$$

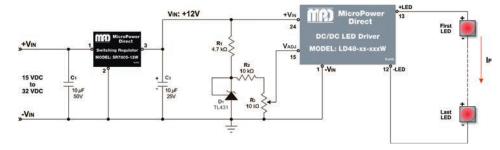
In the second circuit, the 5 VDC regulator (SR2) is replaced by the shunt regulator (D1) circuit connected in parallel with the resistor network. The regulator will maintain the voltage across R2 and R₃ at 2.5 VDC, insuring that the 1.25 VDC limit on the VADJ pin will not be exceeded. This circuit will work for inputs between 7VDC and approximately 36 VDC. For inputs between 36 VDC and 60 VDC, a zener diode (D2) has been


When using the analog control input, the nominal output current is equal to:

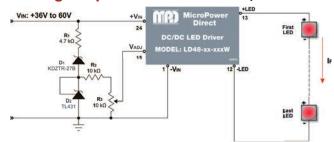
$$I_{NOM} = I_{MAX} \times \frac{V_{ADJ}}{1.25}$$

The VADJ input should be left open if not used. Grounding VADJ will shut the unit down. Connecting VADJ to directly to +VIN may damage the unit.

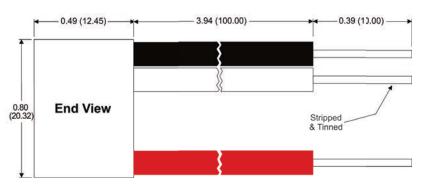

Mechanical Dimensions



www.micropowerdirect.com


Analog Output Current Control

Analog Output Current Control (7 - 36 VDC IN)



Analog Output Current Control (36 - 60 VDC IN)

Pin Connections

Pin	Color	LD48-xx-xxxW		Pin	Color	LD	48-xx-xxxWA
1	Black	-VIN	-DC Supply	1	Black	-VIN	-DC Supply
15	White		No Wire	15	White	VADJ	PWM, On/Off
12	Blue	-LED	LED Cathode Conn.	12	Blue	-LED	LED Cathode Conn.
13	Yellow	+LED	LED Anode Conn.	13	Yellow	+LED	LED Anode Conn.
24	Red	+VIN	+DC Supply	24	Red	+VIN	+DC Supply

MicroPower Direct We Power Your Success - For Less! 292 Page Street Ste D Stoughton, MA 02072 • TEL: (781) 344-8226 • FAX: (781) 344-8481 • E-Mail: sales@micropowerdirect.com

- All dimensions are typical in inches (mm)
- Tolerance $x.xx = \pm 0.02 (\pm 0.50)$
- Pin 1 is marked by a "dot" or indentation on the top of the unit