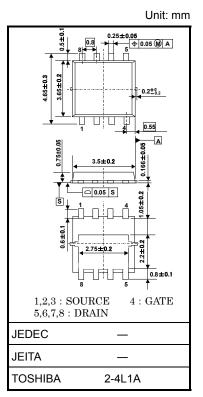
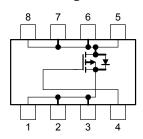
TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS V)


# **TPCM8102**

Lithium Ion Battery Applications Notebook PC Applications Portable Equipment Applications

- Small footprint due to a small and thin package
- Low drain-source ON-resistance: RDS (ON) =  $6.0 \text{ m}\Omega$  (typ.)
- High forward transfer admittance:  $|Y_{fs}| = 44S$  (typ.)
- Low leakage current:  $I_{DSS} = -10 \mu A \text{ (max) (V}_{DS} = -30 \text{ V)}$
- Enhancement mode:  $V_{th} = -0.8 \text{ to } -2.0 \text{ V (V}_{DS} = -10 \text{ V}, I_D = -1 \text{ mA})$


## **Absolute Maximum Ratings (Ta = 25°C)**

| Characte                | eristic                         | Symbol           | Rating     | Unit |  |
|-------------------------|---------------------------------|------------------|------------|------|--|
| Drain-source voltage    |                                 | $V_{DSS}$        | -30        | V    |  |
| Drain-gate voltage (R   | $k_{GS} = 20 \text{ k}\Omega$ ) | $V_{DGR}$        | -30        | V    |  |
| Gate-source voltage     |                                 | $V_{GSS}$        | ±20        | V    |  |
| Drain current           | DC (Note 1)                     | I <sub>D</sub>   | -25        | Α    |  |
| Diam current            | Pulse (Note 1)                  | I <sub>DP</sub>  | -75        | , \  |  |
| Drain power dissipation | on (Tc = 25°C)                  | $P_{D}$          | 30         | W    |  |
| Drain power dissipation | on $(t = 10 s)$<br>(Note 2a)    | $P_{D}$          | 2.3        | W    |  |
| Drain power dissipation | on (t = 10 s)<br>(Note 2b)      | P <sub>D</sub>   | 1.0        | W    |  |
| Single-pulse avalance   | ne energy<br>(Note 3)           | E <sub>AS</sub>  | 81         | mJ   |  |
| Avalanche current       |                                 | I <sub>AR</sub>  | -25        | Α    |  |
| Repetitive avalanche    | energy<br>= 25°C) (Note 4)      | E <sub>AR</sub>  | 1.8        | mJ   |  |
| Channel temperature     |                                 | T <sub>ch</sub>  | 150        | °C   |  |
| Storage temperature     | range                           | T <sub>stg</sub> | -55 to 150 | °C   |  |



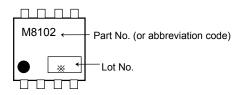
Weight: 0.028 g (typ.)

#### **Circuit Configuration**

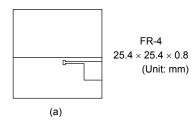


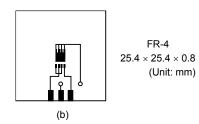
Note: For Notes 1 to 4, refer to the next page.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

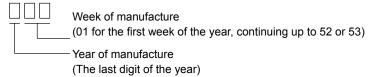

This transistor is an electrostatic-sensitive device. Handle with care.




#### **Thermal Characteristics**


| Characteristic                                              | Symbol                 | Max  | Unit |
|-------------------------------------------------------------|------------------------|------|------|
| Thermal resistance, channel to case (Tc = 25°C)             | R <sub>th (ch-c)</sub> | 4.17 | °C/W |
| Thermal resistance, channel to ambient (t = 10 s) (Note 2a) | R <sub>th (ch-a)</sub> | 54.3 | °C/W |
| Thermal resistance, channel to ambient (t = 10 s) (Note 2b) | R <sub>th (ch-a)</sub> | 125  | °C/W |

## Marking (Note 5)



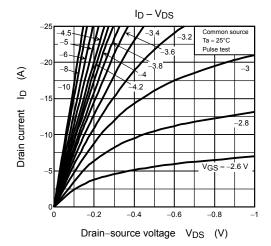

- Note 1: Ensure that the channel temperature does not exceed 150°C.
- Note 2: (a) Device mounted on a glass-epoxy board (a)
- (b) Device mounted on a glass-epoxy board (b)

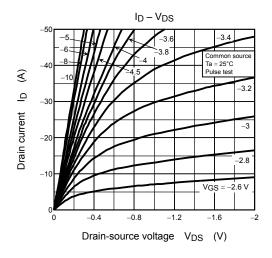


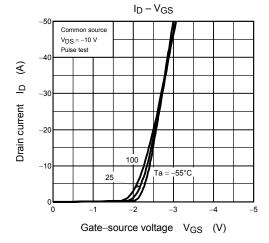


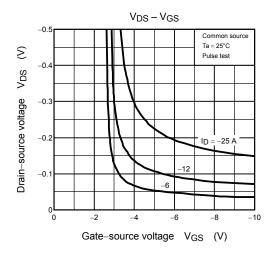
- Note 3:  $V_{DD} = -24~V,~T_{ch} = 25^{\circ}C$  (initial),  $L = 100 \mu H,~R_G = 25~\Omega,~I_{AR} = -25~A$
- Note 4: Repetitive rating: pulse width limited by max channel temperature
- Note 5: on lower left of the marking indicates Pin 1.
  - \* Weekly code: (Three digits)

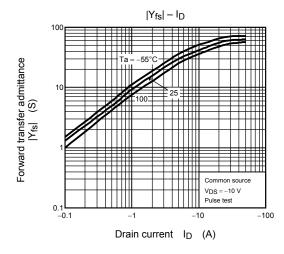


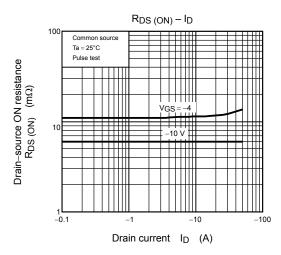


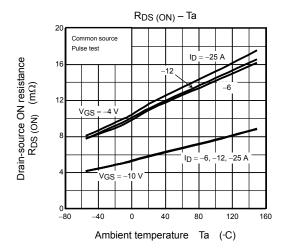


# **Electrical Characteristics (Ta = 25°C)**

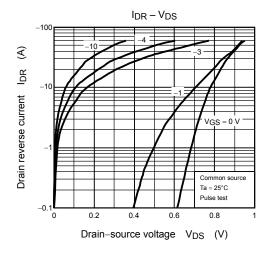

| Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | aracteristic   | Symbol                | Test Condition                                                  | Min  | Тур. Мах |                    | Unit   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|-----------------------------------------------------------------|------|----------|--------------------|--------|
| Gate leakage cur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rent           | I <sub>GSS</sub>      | $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$               | _    | _        | ±100               | nA     |
| Drain cutoff curre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ent            | I <sub>DSS</sub>      | $V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}$                  | _    | _        | -10                | μА     |
| Drain agurag bro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | akdowa voltago | V <sub>(BR) DSS</sub> | $I_D = -10 \text{ mA}, V_{GS} = 0 \text{ V}$                    | -30  | _        | _                  | V      |
| Drain-source breakdown voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | V <sub>(BR) DSX</sub> | $I_D = -10 \text{ mA}, V_{GS} = 20 \text{ V}$                   | -13  | _        | _                  | V      |
| Gate threshold ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oltage         | V <sub>th</sub>       | $V_{DS} = -10 \text{ V}, I_D = -1 \text{ mA}$                   | -0.8 | _        | -2.0               | V      |
| Drain course ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rocietanoo     | Pro (ON)              | $V_{GS} = -4 \text{ V}, I_D = -12 \text{ A}$                    | 1116 |          | mΩ                 |        |
| Drain-source ON-resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | R <sub>DS</sub> (ON)  | $V_{GS} = -10 \text{ V}, I_D = -12 \text{ A}$                   |      | 6.0      | 7.7                | 1117.5 |
| Forward transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | admittance     | Y <sub>fs</sub>       | $V_{DS} = -10 \text{ V}, I_D = -12 \text{ A}$                   | 22   | 2 44 —   |                    | S      |
| Input capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e              | C <sub>iss</sub>      |                                                                 | 2450 |          |                    |        |
| Reverse transfer capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | C <sub>rss</sub>      | $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{V}, f = 1 \text{MHz}$ | _    | 530      | _                  | pF     |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | Coss                  |                                                                 | _    | 740      | _                  |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rise time      | t <sub>r</sub>        | $V_{GS}$ $0 \text{ V}$ $\Gamma$ $I_D = -12 \text{ A}$           | _    | 13       | ±100 -102.0 16 7.7 |        |
| Switching time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Turn-on time   | t <sub>on</sub>       | -10 V G G S S S                                                 | _    | 22       |                    |        |
| Input capacitance $C_{iss}$ Reverse transfer capacitance $C_{rss}$ Output capacitance $C_{oss}$ Rise time $C_{oss}$ | _              | ns                    |                                                                 |      |          |                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Turn-off time  | t <sub>off</sub>      |                                                                 |      | 340      |                    |        |
| Total gate charge (gate-source plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | Qg                    | V <sub>DD</sub> ≈ -24 V, V <sub>GS</sub> = -10 V,               | _    | 60       | _                  |        |
| Gate-source charge 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | Q <sub>gs1</sub>      | $I_D = -25 \text{ A}$                                           |      | 11       |                    | nC     |
| Gate-drain ("Mille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er") charge    | Q <sub>gd</sub>       |                                                                 | _    | 19       | _                  |        |

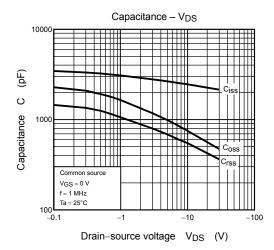

## Source-Drain Ratings and Characteristics (Ta = 25°C)

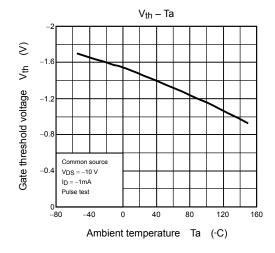

| Characteristic          |       | Symbol   | Test Condition   | Min                                            | Тур. | Max | Unit |   |
|-------------------------|-------|----------|------------------|------------------------------------------------|------|-----|------|---|
| Drain reverse current   | Pulse | (Note 1) | I <sub>DRP</sub> | _                                              | _    | _   | -75  | Α |
| Forward voltage (diode) |       |          | $V_{DSF}$        | $I_{DR} = -25 \text{ A}, V_{GS} = 0 \text{ V}$ |      | _   | 1.2  | V |

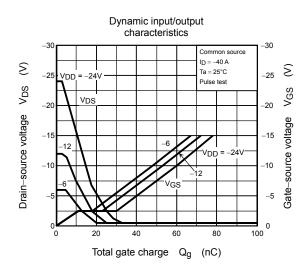


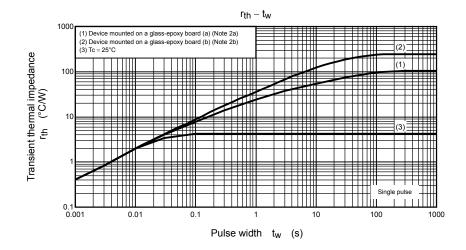



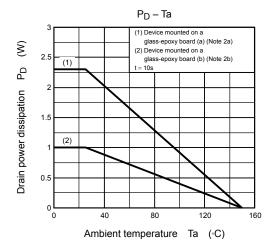



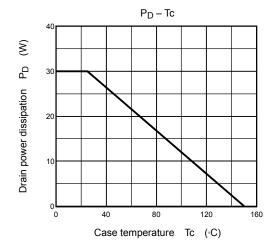



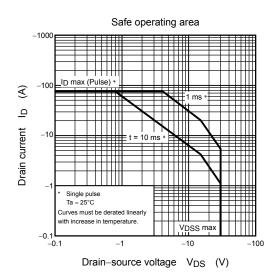














#### **RESTRICTIONS ON PRODUCT USE**

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
  In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
  compatibility. Please use these products in this document in compliance with all applicable laws and regulations
  that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
  occurring as a result of noncompliance with applicable laws and regulations.