1. Description

SD6830 is a remote control transmitter, consists of the optimized 4-bit CPU with ROM and RAM. It contains power-on reset, watchdog timer and carrier frequency generator. The SD6830 provide a various carrier frequency for encoding output of key matrix and has built-in transistor to drive infrared LED. The SD6830 is supported with a software development tool, which allows code development in a PC environment. It allows the user to simulate the SD6830 on an instruction level.

2. Features

- Number of basic instructions -- 45
- Instruction cycle time (one word instruction)

At Fsys=480KHz --16. $16.67 u S$
At Fsys=455kHz ---17. 17.58 C

- Memory size

ROM ---1024 x 8 Bits
RAM -- 32×4 Bits

- Input ports (D0 ~ D3, E0 ~ E3 : with pull-up resistor)
- Output ports (C, G, K, F0 ~ F7)
- Carrier frequency generator

Fsys/12 (1/2 duty), Fsys/12 (1/3 duty), Fsys/12 (1/4 duty), Fsys/8 (1/2 duty), Fsys/8 (1/4 duty), Fsys/11 (4/11 duty), No carrier

- Watchdog Timer
- Built-in power on reset
- Single power supply

```
\(1.8 \mathrm{~V} \sim 3.6 \mathrm{~V}\)
```

- Power dissipation (stop mode , VDD = 3V)
-Package --- 20/24 DIP, 20/24 SOP
- Low- power system applications such as an infrared remote controller
- MASK OPTION

1. Divide ratio of the oscillator frequency
2. Whether connected infrared LED driver or not

* Descriptions of this spec sheet assume that the SD6830 include driver for infrared LED.

3. Ordering Information

Type NO.	Marking	Package Code
SD6830P-option	SD6830P-option	DIP20
SD6830-option	SD6830-option	SOP20
SD6830P-option	SD6830P-option	DIP24
SD6830-option	SD6830-option	SOP24

4. Block Diagram

Figure 4-1 Block Diagram of the SD6830

5. PIN Assignment and Description

5.1 PIN Assignment for 24PINS(DIP24, SOP24)

Figure 5-1. Pin Assignment of 24 Pins

5.2 PIN Description for 24 PINS

Symbol	Pin No.	I /O	Functions	I/O Type
VDD	24	-	Power Supply	
VSS	1	-	Ground	
TEST	22	INPUT	Input for test (Normally connected to VSS)	
OSCin	2	INPUT	Input for oscillating	
OSCout	3	OUTPUT	Output for oscillating	B
C/REM	23	OUTPUT	1-Bit output for remote transmission	A
D0 - D3	$5 \sim 8$	INPUT	4-Bit input for key sense (with pull-up resistor)	A
E0 - E3	$9 \sim 12$	INPUT	4-Bit input for key sense (with pull-up resistor)	C
F0 - F7	$20 \sim 13$	OUTPUT	1-Bit individual output for key scan	D
G	4	OUTPUT	1-Bit output	D
K	21	OUTPUT	1-Bit output	

5.3 PIN Assignment for 20PINS(DIP20, SOP20)

Figure 5-3. Pin Assignment of 20Pin

5.4 PIN Description for 20 PINS

Symbol	Pin No.	I /O	Functions	I/O Type
VDD	20	-	Power Supply	
VSS	1	-	Ground	
TEST	18	INPUT	Input for test (Normally connected to VSS)	
OSCin	2	INPUT	Input for oscillating	
OSCout	3	OUTPUT	Output for oscillating	
C/REM	19	OUTPUT	1-Bit output for remote transmission	B
D0 - D3	$4 \sim 7$	INPUT	4-Bit input for key scan (with pull-up resistor)	A
E0 - E1	$8 \sim 9$	INPUT	2-Bit input for key scan (with pull-up resistor)	A
F0 - F6	$16 \sim 10$	OUTPUT	1-Bit individual output for key scan	C
K	17	OUTPUT	1-Bit output	D

5.5 I/O CIRCUIT SCHEMATICS

TYPE A

TYPE B

TYPE C

TYPE D

Note : If STOP mode is specified, the TYPE C output becomes "L" state and the TYPE B output becomes floating state, the TYPE D output maintains previous state

Figure 5-5. I/O Circuit Schematics

6. Basic Function Block

6.1 Program Counter (PC)

Program counter is used to indicate the address of the next instruction to be executed.
The 10-bit program counter consists of two registers, PC_{H} (4-bit) and $\mathrm{PC}_{\mathrm{L}}(6$-bit).
This is a polynomial counter.

6.2 Program Memory (ROM)

Program memory is used to store user-specified program. This consists of a 1024×8-bit. It is organized in 16 pages and each page is 64 bytes long. For page-in addressing, all instructions excluding JMPL and CALL can be executed by page. In order to execute jump or call in page, JMP or CAL is suitable. For page-to-page addressing, JMPL or CALL must be used.

6.3 Data Memory (RAM)

Data memory is used to store various type of processing data. This consists of a 32-nibble, which is organized into two files of 16 nibbles each. RAM addressing is indirectly implemented by a two registers; H, L. It's upper 1-bit register (H) selects one of two files and its lower 4-bit register (L) selects one of 16 nibbles in the selected file.

Figure 6-2. Data Memory Map

6.4 Stack Register (SK)

Stack register is used to store return address and provide a particularly mechanism for transferring control between programs. Two level hardware push/pop stacks are manipulated by CAL, CALL, and RET instructions. CAL/CALL instructions push the current program counter value, incremented by " 1 ", into stack level 1 . Stack level 1 is automatically pushed to level 2.
If more than two subsequent CAL/CALL are executed, only the most recent two return addresses are stored. RET instruction load the contents of stack level 1 into the program counter while stack level 2 gets copied into level 1. If more than two subsequent RET are executed, the stack will be filled with the address previously stored in level 2.

6.5 Arithmetic and Logic Unit (ALU)

This unit is used to perform arithmetic and logical operations such as addition, comparison, and bit manipulation.

6.6 Carry Flag (CY)

The carry flag contains the carry generated by the arithmetic and logical unit immediately after an operation. The set carry (SETB CY) and clear carry (CLRB CY) instructions allow direct access for setting and clearing this flag.

6.7 Skip Flag (SF)

The skip flag is a 1-bit register, which enables programs to conditionally skip an instruction. All instructions are executed when this flag is , the program executes NOP instruction and resets SF to " 0 ". Then program execution proceeds.
The following instructions affect the skip flag

Instructions		Set conditions of SF
Arithmetic	ADD n INC L	If carry occurs $(\mathrm{L})=0$
Compare	IFO @HL.b IFO CY IFEQU @HL IFEQU n	M[HL].b $=0$ (CY) $=0$ (A) $=$ M[HL].b (A) $=n$
Data Transfer	STA @HL+ XCH @HL+	(L) $=0$ (L) $=0$

The instructions, which doesn t affect the skip flag but have a skip condition, are as follows.

Instructions		Skip conditions
Data Transfer	LDA n LDL n	If it is continuous, skip next same instruction. If it is continuous, skip next same instruction.
Bit Manipulate	SETB H CLRB H	If SETB H or CLRB H are continuous, skip next SETB H or CLRB H instruction.

6.8 Registers

Register A

Register A, called the accumulator, plays a central role, is used to store an input or an output operand (result) in the execution of most instructions. It consists of 4-bit.

Register B

Register B is used to store a temporary data in CPU. It consists of 4-bit.

Register H

Register H is used to indicate an address of the data memory in conjunction with register L . It consists of 1-bit, which is related with the bit 0 of accumulator

Register L

Register L is used to indicate an address of the data memory in conjunction with register H , Also lower 3-bit can be used to indicate the bit position of the port F. It consists of 4 -bit

Register Z

Register Z is used to select a carrier frequency. The carrier frequency must be selected before Port C data write operation. It consists of 3-bit.

Register \mathbf{Z}			Carrier frequency
Bit 2	Bit 1	Bit 0	
0	0	0	$\mathrm{F}_{\mathrm{SYS}} / 12,1 / 2$ duty
0	0	1	$\mathrm{F}_{\mathrm{SYS}} / 12,1 / 3$ duty
0	1	0	$\mathrm{F}_{\mathrm{SYS}} / 12,1 / 4$ duty
0	1	1	$\mathrm{F}_{\mathrm{SYS}} / 8,1 / 2$ duty
1	0	0	$\mathrm{F}_{\mathrm{SYS}} / 8,1 / 4$ duty
1	0	1	$\mathrm{F}_{\text {SYS }} / 11,4 / 11$ duty
1	1	0	No carrier
1	1	1	No carrier

6.9 I /O Ports

Port C/ REM

Port C/REM is a 1-bit output port, which is related with the bit 3 of accumulator, with CMOS N -channel open drain, which have large current sink capability, for I.R.LED drive.
This output can be configured as carrier frequency by programming the register Z and port C data. This pin is put into the high-impedance state in stop mode.

Port D

Port D is a 4 -bit input port with pull-up resistor. Forcing any input pins to " L " state, system reset occurs and it starts to operate from the reset address.

Port E

Port E is a 4-bit input port with pull-up resistor. Forcing any input pins to reset occurs and it starts to operate from the reset address.

Port F

Port F is an 8 -bit output port with N -channel open drain. Each output which specified by the lower 3-bit of register L can be set and reset individually. All F pins are put into the low state in stop mode.

Port G

Port G is a 1-bit output port with N -channel open drain. When stop mode is specified, this pin still remains in the previous state. Set this pin to appropriate state before entering stop mode for visible LED or key scan application.

Port K

Port K is a 1-bit output port with N -channel open drain. When stop mode is specified, this pin still remains in the previous state. Set this pin to appropriate state before entering stop mode for visible LED or key scan application.

6.10 Carrier frequency generator

One of seven carrier frequencies can be selected and transmitted through the C/REM pin by programming the register Z and port C .

Figure 6-3 PORT C/REM and Carrier Output

6.11 Watchdog timer (WDT)

The watchdog timer provides the means to return to a reset condition when a system malfunction occurs and the program enters an infinite loop caused by noise or any abnormal state.
Also this timer have a function of oscillation stabilization timer. This is a 13-bit counter, counts the clock which is divided twelve ($\mathrm{F}_{\mathrm{SYs}} / 12$). In the stop mode the oscillation circuit stops but when a key input is detected (Port D, Port E) oscillation starts. When 12288 clock cycles have been counted, the program will be executed from reset address (000H). If the port C data register's value does not change from "L" to " H " before the timer counts 98304 clock cycles, a device reset condition is generated.
The oscillator stabilization time : $12 / \mathrm{F}_{\mathrm{SYS}} * 2^{10}=1 / \mathrm{F}_{\mathrm{SYS}} * 12288=27 \mathrm{mS}$ (@455KHz)
The time-out period : $12 / \mathrm{F}_{\mathrm{SYS}} * 2^{13}=1 / \mathrm{F}_{\mathrm{SYS}} * 98304=216 \mathrm{mS}(@ 455 \mathrm{KHz})$

Figure 6-4. Function of Watchdog Timer

after the reset release)
Port G and Port K retain previous state.

Figure 6-6. Rest structure and Release Timing for STOP Mode to Normal Mode

6.14 OSC Divide Option

The OSC divide option provides a maximum 1 MHz system clock ($\mathrm{F}_{\text {sYs }}$). $\mathrm{F}_{\text {osc }}$ which is generated in oscillation circuit is divided eight or non-divide to produce $F_{\text {sys }}$.
This dividing ratio will be selected by mask option.
$F_{\text {osc }}$: Oscillator clock, $F_{\text {SYS }}$: System clock ($\mathrm{F}_{\text {osc }}$ or $\mathrm{F}_{\text {osc }} / 8$)

Figure 6-7 OSC Divide Option

7. Electrical Specifications

7.1 Absolute maximum ratings

Symbols	Parameters	Conditions	Ratings	Units
V_{DD}	Supply Voltage		N	
V_{1}	Input Voltage	$-0.3 \sim 6.0$	V	
	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V	
			$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~T}_{\mathrm{OPR}}$	Output Voltage	Operating temperature		-
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-	$-20 \sim 85$	${ }^{\circ} \mathrm{C}$

7.2 Recommended operating conditions

$\left(\mathrm{V}_{\text {DD }}=3 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{Ta}=-\mathbf{2 0} \sim \mathbf{7 0}{ }^{\circ} \mathrm{C}\right.$, unless otherwise noted $)$						
Symbols	Parameters		Min.	Typ.	Max.	Units
$V_{\text {DD }}$	Supply Voltage		1.8		3.6	V
V_{1+1}	"H" input Voltage, all input pins except OSCIN		$0.7 \mathrm{~V}_{\mathrm{DD}}$	$V_{\text {DD }}$	$V_{\text {DD }}$	-V
$\mathrm{V}_{\mathrm{IH} 2}$	"H" input Voltage, OSCIN		$V_{\text {DD }}-0.3$	$V_{\text {DD }}$	$V_{\text {DD }}$	V
$\mathrm{V}_{\text {ILI }}$	"L" input Voltage, all input pins except OSCIN		0	0	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {IL2 }}$	"L" input Voltage, OSCIN		0	0	0.3	V
$\mathrm{F}_{\text {OSC }}$	Oscillating frequency	Non-divide option	250		1000	KHz
		Divide-8 option	2		6	MHz

7.3 Electrical characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=\mathbf{3 V} \pm \mathbf{1 0 \%}, \mathbf{T a}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted $)$

Symbols	Parameters	Test Conditions	Min.	Typ.	Max.	Units
$V_{\text {DD }}$	Supply Voltage	$250 \mathrm{KHz} \leq \mathrm{F}_{\text {osc }} \leq 3.9 \mathrm{MHz}$	1.8	3.0	3.6	V
		$3.9 \mathrm{MHz} \leq \mathrm{F}_{\text {osc }} \leq 6.0 \mathrm{MHz}$	2.2	3.0	3.6	V
I_{OH}	"H" output current	$\mathrm{V}_{\mathrm{o}}=2.0 \mathrm{~V}$, Port C	-6	-9	-14	mA
$\mathrm{I}_{\text {OLO }}$	"L" output current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$, Port C	1.5	3	4.5	mA
$\mathrm{I}_{\mathrm{OL1}}$	"L" output current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$, Port C	180	210	240	mA
$\mathrm{I}_{\mathrm{OL} 2}$		$\mathrm{V}_{0}=0.4 \mathrm{~V}$, Port F	0.5	1.0	2.0	mA
$\mathrm{I}_{\text {OL3 }}$		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$, Port G/K	1.5	3.0	4.5	mA
$\mathrm{I}_{\mathrm{LIH} 1}$	"H" input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$, Port D/E	-	-	3	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{LIH} 2}$		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}, \mathrm{OSCIN}$	-	3	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LIL }}$	"L" input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$, OSCIN	-0.6	- 3	-10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LOH }}$	"H"output leakage current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$, Port C/F/G/K	-	-	1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {PULL-UP }}$	Pull-up resistance of input Port	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}$	30	70	150	$K \Omega$
I_{DD}	Supply current at normal mode			0.5	1.0	mA
$\mathrm{I}_{\text {DDS }}$	Supply current at stop mode				1.0	$\mu \mathrm{A}$
$\mathrm{F}_{\text {SYS }}$	Clock frequency		250		1000	KHz
$\mathrm{F}_{\text {OSC }}$	Oscillator frequency	Non-divide option	250		1000	KHz
		Divide-8 option	2		6	MHz

8. Packing Outlines and Dimensions

9. Instructions

9.1 Symbol Description

SYMBOL	DESCRIPTIONS
A , B, L	4 Bit Register
H	1-Bit Register
Z	3-Bit Register
PCH	The Higher 4-Bit of the Program Counter
PCL	The Lower 6-Bit of the Program Counter
PC	10-Bit Program Counter (Consisting of the PCH and PCL)
SK	10-Bit Stack Register
CY	1-Bit Carry Flag
SF	1-Bit Skip Flag
C, G, K	1-Bit Port
D, E	4-Bit Port
F	8-Bit Port
\leftarrow	Direction of Data Flow
M[(HL)] or @HL	The Contents of Data Memory Addressed by Reg HL
M[(HL)].b or @HL.b	The Specified Bit's Content of Data Memory Addressed by Reg HL
@HL+	As a result of execution, increment L by one
addr	Address
n	immediate data

9.2 Opcode Map

		0000b	0001b	0010b	0011b	0100b	0101b	0110b	0111b	$\begin{aligned} & \text { 1000b~ } \\ & \text { 1011b } \end{aligned}$	$\begin{aligned} & \text { 1100b~ } \\ & \text { 1111b } \end{aligned}$
		0h	1h	2 h	3h	4h	5h	6h	7h	8h~Bh	Ch~Fh
0000b	Oh	NOP	$\begin{gathered} \text { ADDC } \\ \text { @HL } \end{gathered}$	$\begin{gathered} \mathrm{XCH} \\ \text { @HL+ } \end{gathered}$	$\begin{gathered} \text { LDZ } \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \text { LDL } \\ \mathrm{n} \end{gathered}$	CALL addr	$\begin{gathered} \text { ADD } \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \text { LDA } \\ \mathrm{n} \end{gathered}$	$\begin{aligned} & \text { J MP } \\ & \text { addr } \end{aligned}$	CAL addr
0001b	1h	STOP	$\begin{gathered} \text { LDA } \\ \mathrm{H} \end{gathered}$	XCH @HL							
0010b	2h		$\underset{\mathrm{E}}{\mathrm{LDA}}$	$\underset{\mathrm{L}}{\mathrm{INC}}$							
0011b	3h	$\begin{gathered} \text { STA } \\ \text { H } \end{gathered}$	RRC	LDA @HL							
0100b	4h	$\begin{gathered} \text { IFO } \\ \text { @HL.b } \end{gathered}$	$\begin{gathered} \text { LDA } \\ \mathrm{D} \end{gathered}$	$\underset{\mathrm{H}}{\mathrm{CLRB}}$			$\begin{aligned} & \text { JMPL } \\ & \text { addr } \end{aligned}$				
0101b	5h		$\begin{gathered} \text { LDA } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { SETB } \\ \mathrm{H} \end{gathered}$							
0110b	6h		$\underset{\mathrm{L}}{\mathrm{LDA}}$								
0111b	7h		NOT								
1000b	8h	$\begin{gathered} \text { CLRB } \\ \mathrm{CY} \end{gathered}$		$\begin{aligned} & \text { STA } \\ & \text { @HL+ } \end{aligned}$							
1001b	9h	$\begin{aligned} & \text { SETB } \\ & \text { CY } \end{aligned}$		STA $@ H L$			CRB				
1010b	Ah	$\underset{\mathrm{F}}{\mathrm{CLRB}}$					@HL.b				
1011b	Bh	$\begin{gathered} \text { SETB } \\ \mathrm{F} \end{gathered}$									
1100b	Ch	$\begin{gathered} \text { STA } \\ \text { C } \end{gathered}$	$\begin{aligned} & \text { IFO } \\ & \text { CY } \end{aligned}$	$\underset{\mathrm{G}}{\mathrm{CLRB}}$							
1101b	Dh		RET	$\begin{gathered} \text { SETB } \\ \mathrm{G} \end{gathered}$			SETB				
1110b	Eh	$\begin{gathered} \text { IFEQU } \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \text { STA } \\ \text { B } \end{gathered}$	$\underset{K}{\text { CLRB }}$			@HL.b				
1111b	Fh	IFEQU @HL	$\underset{\mathrm{L}}{\text { STA }}$	$\begin{gathered} \text { SETB } \\ K \end{gathered}$							

9.3 Instruction Descriptions
 ADD n

Binary code : 0110xxxx
Syntax : [<label>] ADD n
Operation $\quad:(A) \leftarrow(A)+n, n=0 \sim 15 \quad(n$ must be decimal number)
Flags : CY: Unaffected. SF: Set to one if carry occurs, cleared otherwise.
Words/Cycles : 1/1
Description : Adds an immediate data to the accumulator and stores the result in the accumulate.

Example	$:$ ADD 8	$;$
	Add 8 to A.	
	JMP 035	$;$
	J Jump to 035 if $0 \leq A \leq 7$	
	$;$	Jump to 05 F if $8 \leq A \leq 15$

ADDC @HL

Binary code	00010000
Syntax	: [<label>] ADDC @HL
Operation	$:(A) \leftarrow(A)+M[(H L)]+(C Y),(C Y) \leftarrow$ Carry
Flags	: CY: Set on carry-out of (A) $+\mathrm{M}[(\mathrm{HL})]+(\mathrm{CY})$ SF: Unaffected
Words/Cycles	: 1/1
Description	: Adds the contents of the accumulator, the contents of data memory addressed by registers H and L , and the carry bit. It stores the result in the accumulator and the carry flag.
Example	: CLRB CY ; Clear CY to zero
	LDA 5 ; Load 5 to A
	CLRB H ; Clear H to zero
	LDL 6 ; Load 6 to L
	ADDC @ ${ }^{\text {a }}$; Add the content of $\mathrm{A}, \mathrm{M}[(06)]$, and the content of CY

CAL addr

Binary code : 11xxxxxx
Syntax : [<label>] CAL addr
Operation $\quad:(S K 1) \leftarrow(S K 0),(S K 0) \leftarrow(P C)+1,(P C L) \leftarrow$ addr, addr $=000 \sim 03 F$ (addr must be hexadecimal number)
Flags : CY: Unaffected SF: Unaffected
Words/Cycles : 1/1
Description : Calls a subroutine located at the indicated address and pushes the current contents of the program counter to the top of stack. The indicated address must be within the current page.
Example : CAL 100 : Call subroutine located at the 100. The 100 must be logical address and within the current page.

CALL addr

Binary code	010100xx xxxxxxxx
Syntax	[<label>] CALL addr
Operation	$\begin{aligned} (S K 1) \leftarrow(S K O), \quad(S K O) \leftarrow & (P C)+1, \quad(P C) \leftarrow \text { addr, addr }=000 \sim 3 F F \\ & (\text { addr must be hexadecimal number }) \end{aligned}$
Flags	CY: Unaffected
	SF: Unaffected
Words/Cycles	: 2/2
Description	Calls a subroutine located at the indicated address and pushes the current contents of the program counter to the top of stack. The indicated address can be anywhere in the full 1Kbyte memory space.
Example	CALL 2FF ; Call subroutine located at the 2FF. The 2FF must be logical address.
CLRB @HL.b	
Binary code	010110xx
Syntax	[<label>] CLRB @HL.b
Operation	$\mathrm{M}[(\mathrm{HL})] . \mathrm{b} \leftarrow 0$
Flags	CY: Unaffected
	SF: Unaffected
Words/Cycles :	: 1/1
Description	Clears the specified bit of data memory addressed by registers H and L to zero.
Example	CLRB H ; Clear H to 0 LDL 10 ; Load 10 to L. The 10 must be decimal number. CLRB @HL. ; Clear the bit 0 of $\mathrm{M}[(\mathrm{OA})]$ to 0.
CLRB CY	
Binary code :	00001000
Syntax	[<label>] CLRB CY
Operation :	$(C Y) \leftarrow 0$
Flags	CY: Set to zero
	SF: Unaffected
Words/Cycles:	
Description :	Clears the carry flag to zero.
Example :	CLRB CY ; Clear CY to zero

CLRB F

Binary code	$:$	00001010
Syntax	$:$	$[<$ label>] CLRB F
Operation	$:$	F.(L) $\leftarrow 0$
Flags	$:$	CY: Unaffected
SF: Unaffected		
Words/Cycles	$:$	$1 / 1$

Description : Clears the specified bit of port F addressed by the lower 3-bit of register L to zero.
Example : LDL 13 ; Load 13 to L

CLRB F : Clears the bit 5 of F to zero

CLRB G

Binary code : 00101100
Syntax : [<label>] CLRB G
Operation : G. $(\mathrm{L}) \leftarrow 0$
Flags : CY: Unaffected SF: Unaffected

Words/Cycles : 1/1
Description : Clears the port G to zero.
Example : CLRB G ; Clear G to zero

CLRB H

Binary code : 00100100
Syntax : [<label>] CLRB H
Operation $\quad: \quad(H) \leftarrow 0$
Flags : CY: Unaffected
SF: Unaffected
Words/Cycles : 1/1
Description : Clears the contents of register H to zero. Skip this instruction if it or SETB H was used just before.

Example : IFEQU 1

CLRB H ; Clear H to zero and skip continuous SETB H/CLRB H, if $(A) \neq 1$
SETB H ; Sets H to one and skip continuous SETB H/CLRB H, if $(A)=1$

CLRB K		
Binary code	$:$	00101110
Syntax	$:$	$[<$ label >] CLRB K
Operation	$:$	$(\mathrm{K}) \leftarrow 0$
Flags	$:$	CY: Unaffected
		SF: Unaffected
Words/Cycles	$:$	$1 / 1$
Description	$:$	Clears the port K to zero.
Example	$:$	CLRB K ; Clear K to zero.

IFO @HL.b

Binary code : 000001xx
Syntax : [<label>] IFO @HL.b
Operation : $M[(H L) b]=0$
Flags : CY: Unaffected
SF: Set to one if equal, cleared otherwise
Words/Cycles : 1/1
Description : Compares the specified bit of data memory addressed by registers H and L with zero.

Example	SETB H	Set H to one
	LDL 4	Load 4 to L
	IFO @HL. 3	Compare the bit 3 of M[(14)] with zero
	JMP 020	Jump to 020 if not equal
	JMP 030	Jump to 030 if equal

I FO CY

Binary code : 00011100
Syntax : [<label>] IFO CY
Operation : $\quad(\mathrm{CY})=0$
Flags : CY : Unaffected
SF : Set to one if equal, cleared otherwise
Words/Cycles : $1 / 1$
Description : Compares the carry flag with zero.
Example : IFO CY ; Compare the content of CY to zero
JMP 030 ; Jump to 030 if not equal
JMP 040 ; Jump to 040 if equal

J MP addr	
Binary code	: 10xxxxxx
Syntax	: [<label>] J MP addr
Operation	$: \quad(\mathrm{PCL}) \leftarrow$ addr, addr $=00 \sim 3 \mathrm{~F}$ (addr must be hexadecimal number)
Flags	: CY : Unaffected
	SF : Unaffected
Words/Cycles	: 1/1
Description	Jumps unconditionally to the indicated address. The indicated address must be within the current page.
Example	JMP 2EF; Jump unconditionally to the 2EF. The 2EF address must be within the current page.
J MPL addr	
Binary code	010101xx xxxxxxxx
Syntax	: [<label>] J MPL addr
Operation	$: \quad(\mathrm{PC}) \leftarrow$ addr, addr $=000 \sim 3 \mathrm{FF}$ (addr must be hexadecimal number.)
Flags	: CY: Unaffected
	SF: Unaffected
Words/Cycles	: $2 / 2$
Description	: Jumps unconditionally to the indicated address. The indicated address can be anywhere in the full 1 K -byte memory space.
Example	: JMPL 100 ; Jump unconditionally to 100
LDA @HL	
Binary code	: 00100011
Syntax	: [<label>] LDA @HL
Operation	$:(A) \leftarrow M[(H L)]$
Flags	: CY: Unaffected
	SF: Unaffected
Words/Cycles	: 1/1
Description	Loads the contents of memory addressed by registers H and L into the accumulator.
Example	: SETB H ; Set H to 1
	LDL 0 ; Load 0 to L
	LDA @HL ; Load M[(10)] into A

LDA n

Binary code : 0111xxxx
Syntax : [<label>] LDA n
Operation : (A) $\leftarrow \mathrm{n}, \mathrm{n}=0 \sim 15$ (n must be decimal number.)
Flags : CY : Unaffected
SF : Unaffected
Words/Cycles: 1/1
Description : Loads an immediate data into the accumulator. Skip this instruction if it was used just before.
Example : STA B
LDA 15 ; Load 15 into A.
LDA 4 ; It is skipped because this instruction was used just before
LDA 7 ; It is skipped because this instruction was used just before
JMP OBO ; Jump to OBO

LDA B

Binary code : 00010101
Syntax : [<label>] LDA B
Operation : $(A) \leftarrow(B)$
Flags : CY: Unaffected
SF: Unaffected
Words/Cycles: 1/1
Description : Loads the contents of register B into the accumulator.
Example : LDA B ; Load the contents of B into A

LDA D

Binary code : 00010100
Syntax : [<label>] LDA D
Operation : $(A) \leftarrow(D)$
Flags : CY: Unaffected
SF: Unaffected
Words/Cycles: 1/1
Description : Loads the contents of port D into the accumulator.
Example : LDA D ; Load the contents of D into A

LDA E

Binary code : 00010010
Syntax : [<label>] LDA E
Operation $\quad: \quad(A) \leftarrow(E)$
Flags : CY: Unaffected SF: Unaffected
Words/Cycles : 1/1.
Description : Loads the contents of port E into the accumulator
Example : LDA E ; Load the contents of E into A

LDA H

Binary code : 00010001
Syntax : [<label>] LDA H
Operation : $(\mathrm{A}) \leftarrow(\mathrm{H})$
Flags : CY: Unaffected
SF: Unaffected
Words/Cycles : 1/1
Description : Loads the contents of register H into the bit 0 of accumulator.
Example : LDA H ; Load the content of H into the bit 0 of A

LDA L

Binary code : 00010110
Syntax : [< label>] LDA L
Operation : $(\mathrm{A}) \leftarrow(\mathrm{L})$
Flags : CY: Unaffected
SF: Unaffected
Words/Cycles: 1/1
Description : Loads the contents of register L into the accumulator.
Example : LDA L; Load the contents of L into A

LDL n

Binary code : 0100xxxx
Syntax : [<label>] LDL n
Operation : $(A) \leftarrow n, n=0 \sim 15$ (n must be decimal number)
Flags : CY: Unaffected
SF: Unaffected
Words/Cycles: 1/1
Description : Loads an immediate data to the register L. Skip this instruction if it was used just before.
Example : LDA 3
LDL 8 ; Load 8 to L
LDL 4 ; It is skipped because this instruction was used just before
JMP OCO ; Jump to OCO

LDZ n

Binary code	00110xxx
Syntax	[<label>] LDZ n
Operation	(A) $\leftarrow \mathrm{n}, \mathrm{n}=0 \sim 7(\mathrm{n}$ must be decimal number)
Flags	CY: Unaffected
	SF: Unaffected
Words/Cycles	1/1
Description	Load an immediate data into the register Z .
Example	LDZ 0 ; Load 0 into Z. The 0 must be decimal number

Binary code : 00000000
Syntax : [<label>] NOP
Operation : $\quad(\mathrm{PC}) \leftarrow(\mathrm{PC})+1$
Flags : CY: Unaffected SF : Unaffected
Words/Cycles : 1/1
Description : No operation.
Example : NOP ; No operation

Example \quad	LDA 7
	NOT ; 1's complement 7, then leaves 8 in A

RET

Binary code : 00011101
Syntax : [<label>] RET
Operation : (PC) $\leftarrow(S K 0), \quad(S K 0) \leftarrow(S K 1)$
Flags : CY: Unaffected SF: Unaffected
Words/Cycles : 1/1
Description : Returns from the subroutine to main routine.
Example : RET ; Returns from the subroutine to main routine

RRC

Binary code	$: 00010011$
Syntax	$:$
Operation	$:($ label $>$] RRC
Olags	$: C(A . b+1) \quad($ A. 3$) \leftarrow(C Y) \quad(C Y) \leftarrow(A .0)$
	SF $:$ Unaffected

Words/Cycles : 1/1
Description : Shifts the contents of accumulator 1-bit to the right through the carry. The carry bit content shifts into the bit 3 of accumulator, and the bit 0 of accumulator is shifted into the carry bit.
Example : SETB CY ; Set CY to one.
LDA 5 ; Load 5 to A
RRC ; CY becomes zero, and the contents of A is 11

SETB @HL.b

Binary code : 010111xx
Syntax : [<label>] SETB @HL.b
Operation : M[(HL)].b $\leftarrow 1$
Flags : CY: Unaffected
SF: Unaffected
Words/Cycles : 1/1
Description : Sets the specified bit of memory addressed by registers H and L to one.
Example : CLRB H ; Clear H to zero
LDL 5 ; Load 5 to L
SETB @HL. 2 ; Set the bit 2 of M[(05)] to one

SETB CY

Binary code : 00001001
Syntax : [<label>] SETB CY
Operation : $\quad(\mathrm{CY}) \leftarrow 1$
Flags : CY: Set to one
SF: Unaffected
Words/Cycles : 1/1
Description : Sets the contents of carry flag to one.
Example : SETB CY ; Sets the content of CY to one

SETB F

Binary code : 00001011
Syntax : [<label>] SETB F
Operation : $\mathrm{F} .(\mathrm{L}) \leftarrow 1$
Flags : CY: Unaffected
SF: Unaffected
Words/Cycles : 1/1
Description : Sets the specified bit of the port F addressed by register L to one.
Example : LDL 4 ; Loads 4 to L
SETB F ; Sets the bit 4 of F to one

SETB G

Binary code	$:$	00101101
Syntax	$:$	$[<$ label $>]$ SETB G
Operation	$:$	$(\mathrm{G}) \leftarrow 1$
Flags	$:$	$\mathrm{CY}:$ Unaffected
		SF : Unaffected
Words/Cycles	$:$	$1 / 1$
Description	$:$	Sets the port G to one.
Example	$:$	SETB G ; Sets the port G to one

SETB H

Binary code : 00100101
Syntax : [<label>] SETB H
Operation $\quad: \quad(H) \leftarrow 1$
Flags : CY: Unaffected
SF: Unaffected
Words/Cycles : $1 / 1$
Description : Sets the contents of register H to one. Skip this instruction if it or SETB H was used just before.
Example : IFEQU 1
SETB H ; Sets H to one and skip continuous CLRB H/SETB H, if (A) $\neq 1$
CLRB H ; Clear H to zero and skip continuous CLRB H/SETB H, if $(A)=1$

SETB K

Binary code : 00101111
Syntax : [<label>] SETB K
Operation $\quad: \quad(\mathrm{K}) \leftarrow 1$
Flags : CY: Unaffected
SF: Unaffected
Words/Cycles : $1 / 1$
Description : Sets the port K to one.
Example : SETB K ; Sets the port K to one

JMP	035	$;$	It is skipped because L is " 0 "
JMP	045	$;$	Jump to 045

STA B
Binary code : 00011110
Syntax : [<label>] STA B
Operation : $\quad(B) \leftarrow(A)$
Flags : CY: Unaffected
Words/Cycles : $1 / 1$
Description : Stores the contents of accumulator in the register B.
Example : STA B ; Stores the contents of A in B

STA C

Binary code	$:$	00001100
Syntax	$:$	$[<$ label $>$] STA C
Operation	$:$	$(\mathrm{C}) \leftarrow(\mathrm{A})_{3}$
Flags	$:$	$\mathrm{CY}:$ Unaffected
		SF : Unaffected
Words/Cycles	$:$	$1 / 1$
Description	$:$	Stores the bit 3 of accumulator in the port C.
Example	$:$	STA C ; Stores the bit 3 of A in C

STA H

Binary code	$:$	00000011
Syntax	$:$	$[<$ label>] STA H
Operation	$:$	$(H) \leftarrow(A) 0$
Flags	$:$	$C Y:$ Unaffected
		SF: Unaffected

Words/Cycles : $1 / 1$
Description : Stores the bit 0 of accumulator in the register H .
Example : STA H ; Store the bit 0 of A in H

STA L

Binary code : 00011111
Syntax : [<label>] STA L
Operation : $(\mathrm{L}) \leftarrow(\mathrm{A})$
Flags : CY: Unaffected
SF: Unaffected
Words/Cycles : 1/1
Description : Stores the contents of accumulator in the register L.
Example : STA L ; Stores the contents of A in L

STOP

Binary code : 00000001
Syntax : [<label>] STOP
Operation : Stop the oscillation of the oscillator, and reset PORT F to zero
Flags : CY: Unaffected SF: Unaffected
Words/Cycles : 1/1
Description : Stops the oscillation of the oscillator.
Example : STOP
XCH @HL
Binary code : 00100001
Syntax : [<label>] XCH @HL
Operation : (A) $\leftrightarrow M[(H, L)]$
Flags : CY: Unaffected SF: Unaffected
Words/Cycles : 1/1
Description : Exchanges the accumulator with the contents of the data memory addressed by registers H and L without going through an intermediate location.

XCH @HL+

Binary code	$:$	00100000
Syntax	$:$	$[<$ label $>]$ XCH @HL+
Operation	$:$	$(A) \leftrightarrow M[(H, L)], \quad(L) \leftarrow(L)+1$

Flags : CY: Unaffected
SF: As a result of execution, set to one if the contents of register L are zero, cleared otherwise
Words/Cycles : 1/1

