FAIRCHILD			October 2000 Revised January 2005
SEMICONDபCTロRTM			
FST34170			
17-Bit to 34-Bit Multiplexer/Demultiplexer Bus Switch			
General Description Features			
The Fairchild Switch FST34170 is a 17-bit to 34 -bit highspeed CMOS TTL-compatible multiplexer/demultiplexer bus switch. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.Slower Output Enable times prevent signal disruption- 4Ω switch connection between two portsMinimal propagation delay through the switchLow I_{CC}			
The device can be used in applications where two buses need to be addressed simultaneously. The FST34170 is designed so that the A Port demultiplexes into B_{1} or B_{2} or both. Two select $\left(\mathrm{SEL}_{1}, \mathrm{SEL}_{2}\right)$ inputs provide switch enable control. trol - Zero bounce in flow-through mode - Control inputs compatible with TTL ■ See Applications Note AN-5008 for			
Ordering Code:			
Order Number	Package Number		Package Description
$\begin{aligned} & \text { FST34170MTD } \\ & \text { (Note 1) } \end{aligned}$	MTD56	56-Lead Thin Shrink	Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
FST34170MTDX_NL (Note 2)	MTD56	Pb-Free 56-Lead Thi 6.1 mm Wide	Shrink Small Outline Package (TSSOP), JEDEC MO-153,
Note 1: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Note 2: "_NL" indicates Pb-Free product (per JEDEC J-STD-020B). Device is available in Tape and Reel only.			

Absolute Maximum Ratings（Note 3）		Recommended Operating
Supply Voltage（ V_{Cc} ）	-0.5 V to +7.0 V	Conditions（Note 6）
DC Switch Voltage（ $\mathrm{V}_{\text {S }}$ ）（Note 4）	-0.5 V to +7.0 V	Power Supply Operating（ V_{CC} ）4．0V to 5.5 V
DC Input Control Pin Voltage		Input Voltage（ $\mathrm{V}_{\text {IN }}$ ） 0 V to 5.5 V
$\left(\mathrm{V}_{\text {IN }}\right)($ Note 5）	-0.5 V to +7.0 V	Output Voltage（ $\mathrm{V}_{\text {OUT }}$ ） 0 V to 5.5 V
DC Input Diode Current（ I_{K} ） $\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$	－50 mA	Input Rise and Fall Time（ $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ ）
DC Output Current（lout）	128 mA	Switch Control Input OnS／V to 5nS／V
DC $\mathrm{V}_{C C} / \mathrm{GND}$ Current（ $\mathrm{I}_{\text {CC }} / \mathrm{I}_{\mathrm{GND}}$ ）	＋／－ 100 mA	Switch I／O OnS／V to DC
Storage Temperature Range（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Free Air Operating Temperature（ T_{A} ）$\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		Note 3：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．The device should not be operated at these limits．The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．
		Note 4： V_{S} is the voltage observed／applied at either the A or B Ports across the switch．
		Note 5：The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed．
		Note 6：Unused control inputs must be held HIGH or LOW．They may not float．

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} （V）	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ （Note 7）	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			－1．2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4．0－5．5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4．0－5．5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
$\mathrm{l}_{\text {OZH，}} \mathrm{l}_{\text {OZL }}$	OFF－STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}$
$\mathrm{I}_{\text {OZH }}, \mathrm{I}_{\text {OZL }}$	OFF－STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{B}, \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}$
R_{ON}	Switch On Resistance （Note 8）	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	14	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{\mathrm{I}} \mathrm{CC}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND， $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in I CC per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at $V_{C C}$ or GND
Note 8：Measured by the voltage drop between A and B pins at the indicated current through the switch．On resistance is determined by the lower of th voltages on the two（A or B）pins．							

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	A or B, to B or A (Note 9)		0.25		0.25	ns	$V_{1}=$ OPEN	Figures 1, 2
$t_{\text {PZH }}$	Output Enable Time, SEL to A, B	7.0	30.0		35.0	ns	$V_{1}=$ OPEN for $t_{\text {PZH }}$	Figures 1, 2
$\mathrm{t}_{\text {PZL }}$	Output Enable Time, SEL to A, B	7.0	30.0		35.0	ns	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$ for $\mathrm{t}_{\text {PZL }}$	Figures 1, 2
$\mathrm{t}_{\mathrm{PHZ}}$	Output Disable Time, SEL to A, B	1.0	6.9		7.3	ns	$\mathrm{V}_{1}=$ OPEN for $\mathrm{t}_{\text {PHZ }}$	Figures 1, 2
$\overline{t_{\text {PLZ }}}$	Output Disable Time, SEL to A, B	1.0	7.7		7.7	ns	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$ for $\mathrm{t}_{\text {PLZ }}$	Figures 1, 2

Note 9: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On
resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Capacitance (Note 10)

Symbol	Parameter	Typ	Max	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	4		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\text {IO OFF }}$	Input/Output Capacitance "OFF State"	8		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Switch OFF

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance, $C_{L}=50 \mathrm{pF}$
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

DETAIL A
TYPICAL
MTDS6 (REV E),
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
