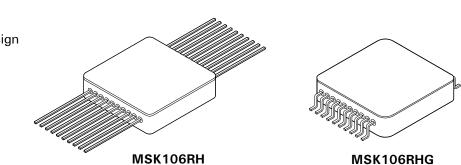
MIL-PRF-38534 CERTIFIED

RADIATION HARDENED HIGH POWER OP-AMP

106RH

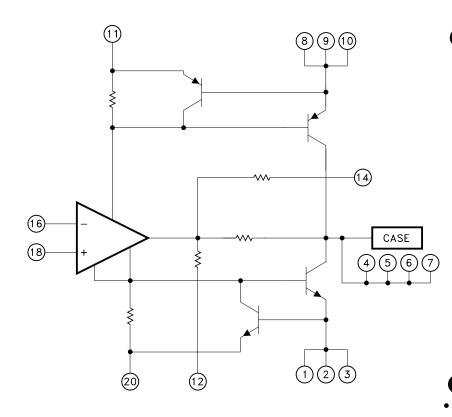
4707 Dey Road Liverpool, N.Y. 13088


FEATURES:

• Total Dose Rated to 100K Rad

M.S KENNEDY CORP.

- High Output Current 2 Amps Peak
- Low Power Consumption-Class C Design
- Programmable Current Limit
- Rad Hard Design
- Output Short Circuit Capability
- Replacement for MSK0021FP
- Available as SMD #TBD


(315) 701-6751

DESCRIPTION:

The MSK 106RH is a Radiation Hardened Class C power operational amplifier. This amplifier offers large output currents, making it an excellent choice for motor drive circuits. The amplifier and load can be protected from fault conditions through the use of internal current limit circuitry that can be user programmed with two external resistors. These devices are also compensated with a single external capacitor. The MSK 106RH is packaged in a 20 pin hermetic metal flatpack that is available with straight or gull wing leads.

EQUIVALENT SCHEMATIC

PIN-OUT	INFORMATION

1	ISC-	20	-VCC
2	ISC-	19	NC
3	ISC-	18	+ VIN
4	VOUT	17	NC
5	VOUT	16	-VIN
6	VOUT	15	NC
7	VOUT	14	Compensation
8	ISC +	13	NC
9	ISC +	12	GND
10	ISC +	11	+VCC
(CASE IS	ALSO VC	DUT

TYPICAL APPLICATIONS

- Servo Amplifier Audio Amplifier
- Motor Driver
 Programmable Power Supply

ABSOLUTE MAXIMUM RATINGS

\pm Vcc	Supply Voltage	Тѕт
Ιουτ	Peak Output Current	Tld
Vin	Differential Input Voltage	
VIN	Common Mode Input Voltage $\dots \dots \dots \dots \dots \dots \pm 15V$	ТJ
Rтн	Thermal Resistance	Тс
	Junction to Case (@ 125°C)	

Storage Temperature Range -65° to +150°C Lb Lead Temperature Range 300°C (10 Seconds) Junction Temperature 150°C Tc Case Operating Temperature Range 150°C to +125°C Military Versions (K/H/E) -55°C to +125°C Industrial Versions -40°C to +85°C

ELECTRICAL SPECIFICATIONS

Parameter	Test Conditions ⑧	Group A	Military (5)			Industrial ④			
		Subgroup	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
STATIC									
Supply Voltage Range 2		-	±5	±15	±22	±5	±15	±22	V
Ouissesset Comment	Vin = 0V	1	-	±1.7	±3.5	-	±1.7	±4.0	mA
Quiescent Current	VIN = 0V	2,3	-	-	± 7.5	-	-	-	mA
Power Consumption 2	VIN = OV	1,2,3	-	75	225	-	75	225	mW
INPUT									
Input Offset Voltage	Vin = 0V	1	-	±0.5	±3.0	-	±0.5	±5.0	mV
input Offset Voltage		2, 3	-	± 2.0	± 5.0	-	-	-	mV
Innut Ding Comment	VCM = 0V	1	-	± 100	± 500	-	± 150	± 500	nA
Input Bias Current	Either Input	2, 3	-	±0.4	±2.0	-	-	-	μA
Input Offset Current	$V_{CM} = 0V$	1	-	± 2.0	±100	-	± 2.0	± 300	nA
		2,3	-	-	±300	-	-	-	nA
Input Capacitance ③	F = DC	-	-	3	-	-	3	-	рF
Input Resistance (2)	F = DC	-	0.3	1.0	-	0.3	1.0	-	MΩ
Common Mode Rejection Ratio	$F = 10Hz$ Vcm $= \pm 10V$	4	70	90	-	70	90	-	dB
		5,6	70	90	-	-	-	-	dB
Power Supply Rejection Ratio	Vcc = $\pm 5V$ to $\pm 15V$	1	80	95	-	80	95	-	dB
		2,3	80	-	-	-	-	-	dB
Input Noise Voltage ③	F = 10Hz to $10KHz$	-	-	5	-	-	5	-	μ Vrms
OUTPUT									
	$R_{L} = 100\Omega F = 100Hz$	4	± 13.5	±14	-	± 13.0	±14	-	V
Output Voltage Swing	NE = 10032 1 = 100112	5,6	± 13.5	±14	-	-	-	-	V
-	$R_L = 10\Omega$ F = 100Hz	4	±11	±12	-	±10.5	±12	-	V
Output Chart Circuit Current	$Rsc = 0.5\Omega$ Vout = MAX	4	0.8	1.2	1.6	0.7	1.2	1.7	A
Output Short Circuit Current	$Rsc = 5\Omega$ Vout = GND	4	50	150	250	50	150	250	mA
Settling Time ③	0.1% 2V step	-	-	4	-	-	4	-	μS
TRANSFER CHARACTERISTICS									
Slew Rate	Vout = $\pm 10V$ RL = 10Ω	4	1.2	1.6	-	1.2	1.6	-	V/µS
Open Loop Voltage Gain	$F = 10Hz$ $R_L = 1K\Omega$	4	100	105	-	100	105	-	dB
		5,6	88	96	-	-	-	-	dB
Transition Times	1V to 2V P Rise and Fall	4	-	0.3	1.0	-	0.3	1.2	μS
Overshoot	1V to 2V P Small Signal		-	5	20	-	5	20	%

<u>NOTES:</u>

(1) Unless otherwise specified, $\pm Vcc = \pm 15V$, Cc = 3000pF.

② Guaranteed by design but not tested.
 ③ Typical parameters are representative

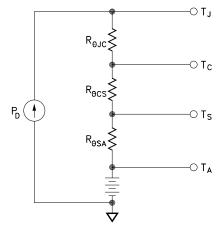
3) Typical parameters are representative of actual device performance but are for reference only.

④ Industrial grade and "E" suffix devices shall be tested to subgroups 1 and 4 unless otherwise specified.

(5) Military grade devices (K/H suffix) shall be 100% tested to subgroups 1, 2, 3 and 4.

- Subgroup 1, 4 TA = TC = +25 °C
- Subgroup 2, 5 $TA = TC = +125^{\circ}C$

Subgroup 3, 6 $TA = TC = -55^{\circ}C$


- 6 Reference DSCC SMD TBD for electrical specifications for devices purchased as such.
- O Subgroup 5 and 6 testing available upon request.
- (8) For complete radiation test data, consult "MSK 106RH Total Dose Test Report".
- (9) Continuous operation at or above absolute maximum ratings may adversly effect the device performance and/or life cylcle.

APPLICATION NOTES

HEAT SINKING

To select the correct heat sink for your application, refer to the thermal model and governing equation below.

Thermal Model:

 $T_J = P_D X (R_{\theta JC} + R_{\theta CS} + R_{\theta SA}) + T_A$

Where

TJ	= Junction Temperature
Pd	 Total Power Dissipation
Rejc	= Junction to Case Thermal Resistance
Recs	= Case to Heat Sink Thermal Resistance
Resa	= Heat Sink to Ambient Thermal Resistance
Тс	= Case Temperature
ТА	= Ambient Temperature
Τ.	

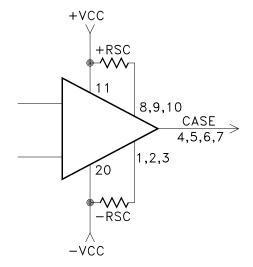
Ts = Sink Temperature

Example:

In our example the amplifier application requires the output to drive a 10 volt peak sine wave across a 10 ohm load for 1 amp of output current. For a worst case analysis we will treat the 1 amp peak output current as a D.C. output current. The power supplies are \pm 15 VDC.

```
1.) Find Power Dissipation
```

- $\begin{aligned} \mathsf{PD} = & [(\mathsf{quiescent current}) \ \mathsf{X} \ (+\mathsf{Vcc} (\mathsf{Vcc}))] \ + \ [(\mathsf{Vs} \mathsf{Vo}) \ \mathsf{X} \ \mathsf{Iout}] \\ &= & (3.5 \ \mathsf{mA}) \ \mathsf{X} \ (30\mathsf{V}) \ + \ (5\mathsf{V}) \ \mathsf{X} \ (1\mathsf{A}) \\ &= & 0.1\mathsf{W} \ + \ 6\mathsf{W} \\ &= & 6.1\mathsf{W} \end{aligned}$ 2.) For conservative design, set $\mathsf{TJ} = \ + \ 125^{\,\circ}\mathsf{C}.$
- 2.) For conservative design, set $IJ = +125^{\circ}C$.
- 3.) For this example, worst case $T_A = +25^{\circ}C$.
- 4.) $R_{\theta JC} = 6.0^{\circ}C/W$
- 5.) Rearrange governing equation to solve for R θ SA: R θ SA = (TJ - TA) / PD - (R θ JC) - (R θ CS)
 - $= (125^{\circ}C 25^{\circ}C) / 6.1W (6.0^{\circ}C/W) (0.15^{\circ}C/W)$ $= 10.2^{\circ}C/W$

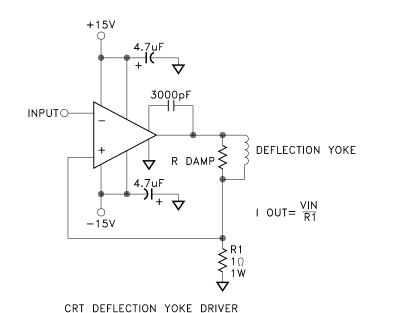

The heat sink in this example must have a thermal resistance of no more than $10.2^{\circ}C/W$ to maintain a junction temperature of less than $+125^{\circ}C$.

CURRENT LIMIT

The MSK 106RH has an on-board current limit scheme designed to limit the output drivers anytime output current exceeds a predetermined limit. The following formula may be used to determine the value of the current limit resistance necessary to establish the desired current limit.

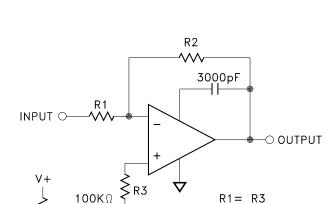
$$Rsc = \frac{0.7}{Isc}$$

Current Limit Connection

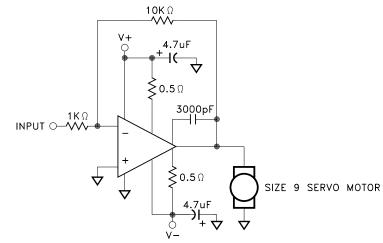


See "Application Circuits" in this data sheet for additional information on current limit connections.

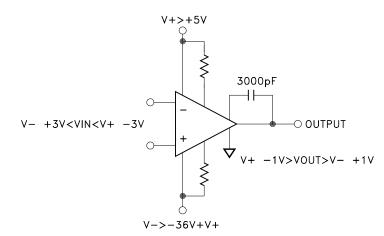
POWER SUPPLY BYPASSING


Both the negative and the positive power supplies must be effectively decoupled with a high and low frequency bypass circuit to avoid power supply induced oscillation. An effective decoupling scheme consists of a 0.1 microfarad ceramic capacitor in parallel with a 4.7 microfarad tantalum capacitor from each power supply pin to ground. It is also a good practice with high power op-amps, such as the MSK 106RH, to place a 30-50 microfarad capacitor with a low effective series resistance, in parallel with the other two power supply decoupling capacitors. This capacitor will eliminate any peak output voltage clipping which may occur due to poor power supply load regulation. All power supply decoupling capacitors should be placed as close to the package power supply pins as possible.

APPLICATION CIRCUITS


V+ RSC 3000pF + RSC OUTPUT RSC V-

UNITY GAIN CIRCUIT WITH SHORT CIRCUIT LIMITING



OFFSET VOLTAGE NULL CIRCUIT

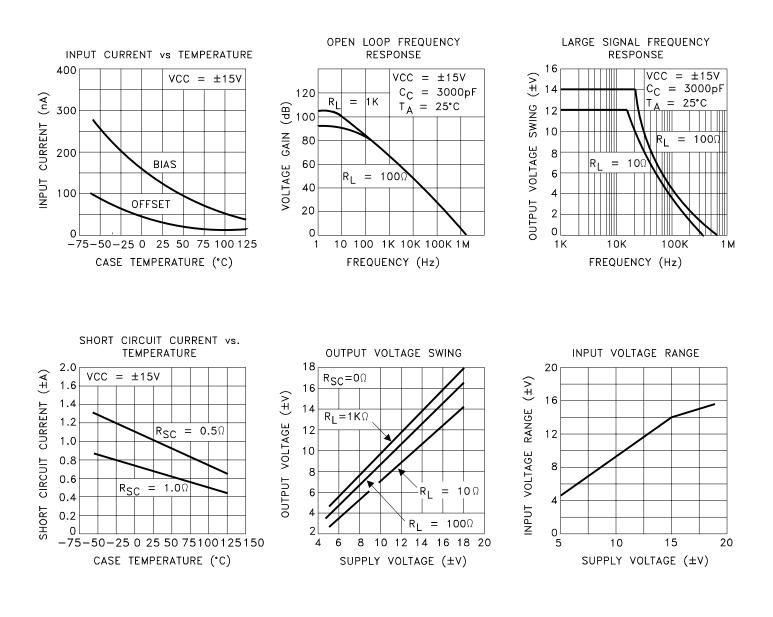
 $AV = \frac{R2}{R1}$

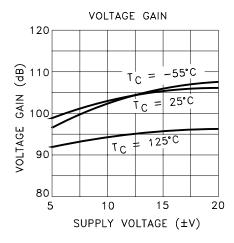
DC SERVO AMPLIFIER

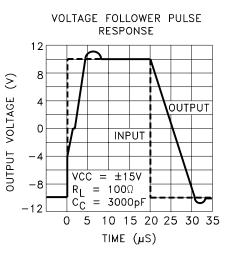
NON SYMMETRICAL SUPPLIES

4

20ΚΩ

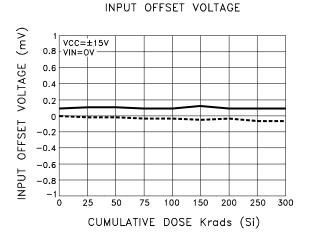

v

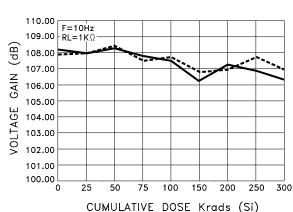

 $\Lambda \Lambda \Lambda$

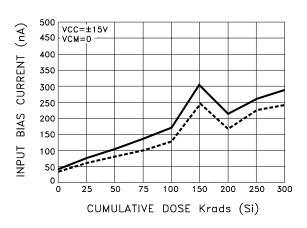

≨100Ω

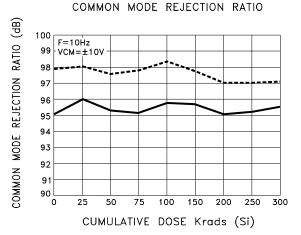
ゼ

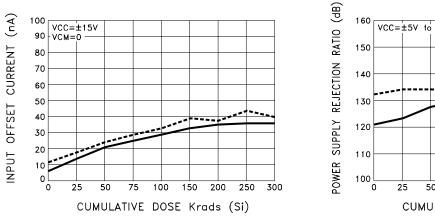
TYPICAL PERFORMANCE CURVES



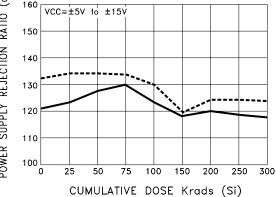



Downloaded from <u>Elcodis.com</u> electronic components distributor

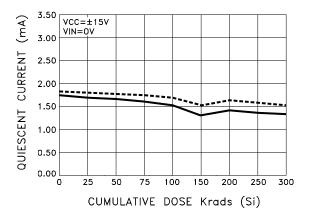

RADIATION PERFORMANCE CURVES

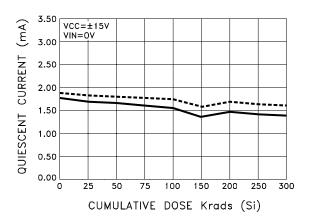


INPUT BIAS CURRENT



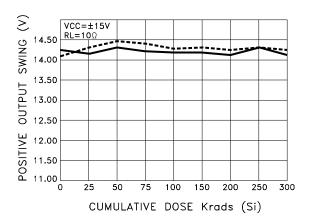
POWER SUPPLY REJECTION RATIO




---- AVERAGE BIASED

VOLTAGE GAIN

RADIATION PERFORMANCE CURVES CONT'D


POSITIVE QUIESCENT CURRENT

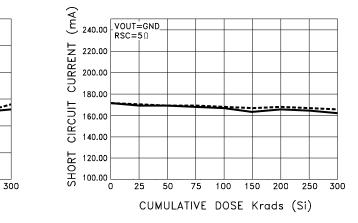
NEGATIVE QUIESCENT CURRENT

POSITIVE OUTPUT SWING

NEGATIVE OUTPUT SWING

100

CUMULATIVE DOSE Krads (Si)


75

150

200

250

SHORT CIRCUIT CURRENT

AVERAGE BIASED

1.50

1.40

1.30

1.20

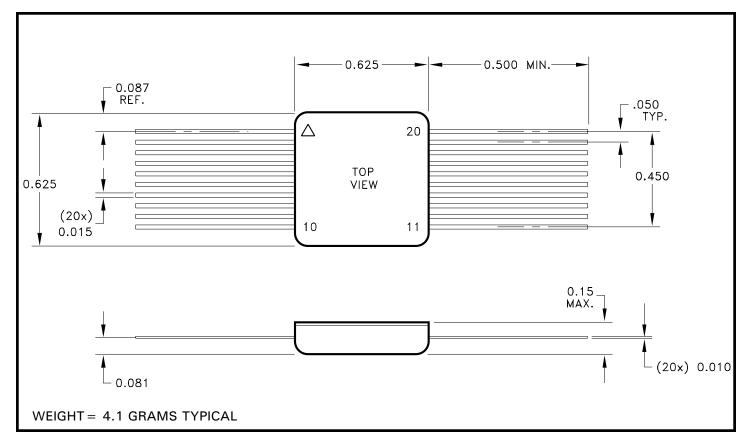
1.10

1.00

0

25

50

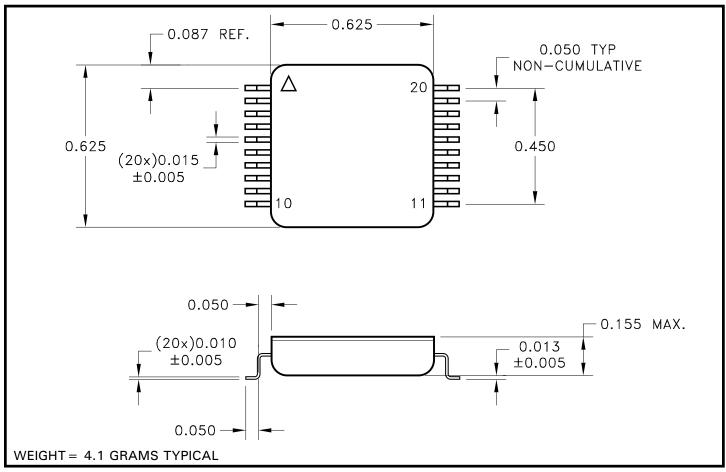

CIRCUIT CURRENT

SHORT

VOUT-MAX

RSC=0.50

MECHANICAL SPECIFICATIONS CONTINUED



NOTE: ALL DIMENSIONS ARE ± 0.010 INCHES UNLESS OTHERWISE LABELED. ESD Triangle indicates pin 1.

ORDERING INFORMATION

Part Number	Screening Level
MSK106RH	INDUSTRIAL
MSK106E RH	EXTENDED RELIABILITY
MSK106H RH	MIL-PRF-38534 CLASS H
MSK106K RH	MIL-PRF-38534 CLASS K
SMD TBD	TBD

MECHANICAL SPECIFICATIONS CONTINUED

NOTE: ALL DIMENSIONS ARE ±0.010 INCHES UNLESS OTHERWISE LABELED. ESD Triangle indicates pin 1.

Part Number	Screening Level
MSK106RHG	INDUSTRIAL
MSK106E RHG	EXTENDED RELIABILITY
MSK106H RHG	MIL-PRF-38534 CLASS H
MSK106K RHG	MIL-PRF-38534 CLASS K
SMD TBD	TBD

ORDERING INFORMATION

M.S. Kennedy Corp. 4707 Dey Road, Liverpool, New York 13088 Phone (315) 701-6751 Fax (315) 701-6752 www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however and assumes no liability for the use of its products. Please visit our website for the most recent revision of this datasheet.

Contact MSK for MIL-PRF-38534 Class H, Class K and Appendix G (radiation) status.