Single Loop Controller SDC25/26

Features

The DigitroniK SDC25/26 is a digital indicating controller featuring multi-range inputs and PID control system using new algorithms "RationaLOOP" and "JustFiTTER".
Up to two control output points (this number of points may vary depending on the model) can be used, which are selectable from the relay contact, voltage pulse, and current.
The smart loader package ensures easy setting operation and monitoring.
This controller is compliant to the IEC directives and the CE marking.

- Space saving design with a depth of 65 mm . The mask of the front panel is also only 5 mm thick.
- High accuracy of $\pm 0.3 \% \mathrm{FS}$ and sampling cycle of 0.3 s (seconds).
- Multi-range inputs are available for selection, where the input type can be freely changed among thermocouple, RTD, current, and voltage.
- The control method can be selected from any of the ON/ OFF control and PID control using "RationaLOOP" + "Just-FiTTER".

- The heat/cool control can be achieved using two control output points and event outputs.
- The PC loader port is provided as a standard function.
- The control output types available for selection are relay, voltage pulse, and current outputs. The heat /cool control can be achieved by interfacing with the 2 nd control output in combination with these outputs.
- Event 3 points or 2 points (independent contact), CT input 2 points, DI 4 points, and RS-485 can be selected in combination.
- The smart loader package (SLP-C35) can be used.

Basic Function Block of SDC25/26

Specifications

PV input	Input type	Multi-range of inputs - thermocouple, RTD, DC current and DC voltage		
	Input sampling time	0.3s		
	Input bias current	Thermocouple input: $0.2 \mu \mathrm{~A}$ or less RTD input: 1 mA typical DC voltage input: 1 V range or less... $1 \mu \mathrm{~A}$ or less 0 to $5 \mathrm{~V}, 1$ to 5 V range... $3.5 \mu \mathrm{~A}$ or less 0 to 10 V range... $7 \mu \mathrm{~A}$ or less 		(Note 1) RTD or A-wire burnout: Upscale + AL01 B-wire or C-wire burnout: Upscale + AL01, 03 More than 2-wire burnout: Upscale + AL01
	Burnout	Thermocouple input: Upscale + alarm display RTD input: Upscale + alarm display (Note 1) DC voltage input: Upscale + alarm display (However, the burnout cannot be detected for the 0 to 10V range.) DC current input: Upscale + alarm display (However, the burnout cannot be detected for the 0 to 20mA range.)		
Indications and setting	PV, SP indication method	4-digit, 7-segment LED (PV: Upper green display, SP: Lower orange display)		
	Number of setting points	Max. 4 points		
	Setting range	Lower to higher limit value of the PV range (SP upper/lower limit available)		
	Multi-status indicator	The control output status, alarm or RUN/READY status is indicated.		
	Indication accuracy	$\pm 0.3 \% \mathrm{FS} \pm 1 \text { digit }$ In the negative area of the thermocouple, the accuracy is $\pm 0.6 \% \mathrm{FS} \pm 1$ digit (at an ambient temperature of $23 \pm 2^{\circ} \mathrm{C} \text {.) }$		
	Indication range	See Table 1.		
Control output	Output type	Relay contact	Voltage pulse	Current
	Control action	Time proportional PID	Time proportional PID	Continuous PID
	Number of PID groups	Max. 4 groups	Max. 4 groups	Max. 4 groups
	PID auto-tuning	Automatic PID value setting by limit cycle method. However, one of the following 3 control characteristics can be selected: - Standard - Quick disturbance response - Less up/down fluctuations		
	Output rating	NO side: $250 \mathrm{Vac} / 30 \mathrm{Vdc}$, 3A (resistive load) NC side: 250Vac/30Vdc, 1A (resistive load) Service life: NO side: 50,000 cycles or more NC side: 100,000 cycles or more Min. opening/closing time: 250ms	Open terminal voltage: $19 \mathrm{Vdc} \pm 15 \%$ Internal resistance: $82 \Omega \pm 0.5 \%$ Allowable current: Max. 24mAdc Min. OFF/ON time: When 1s or less: 1 ms When 2 to 9s: Cycle time $\times 1 \mathrm{~ms}$ When 10s or longer: 250 ms	Output type: 0 to 20 mAdc or 4 to 20 mAdc Allowable load resistance: Max. 600Ω Output accuracy: $\pm 0.3 \%$ FS (However, $\pm 1 \%$ FS for 0 to 1 mA)
	Cycle time (s)	5 to 120	$0.1,0.25,0.5,1$ to 20	-
	PID control	Proportional band (\%FS) $\quad 0.1$ to 999.9		
		Integral time (s) 0	0 to 9999	
		Derivative time (s)	0 to 9999	
		Manual set (\%) -	-10.0 to +110.0	
	Just-FiTTER	Overshoot suppression coefficient 0	0 to 100	
	ON/OFF control	Operating differential (${ }^{\circ} \mathrm{C}$)	0 to 9999 digit	
	Control operation selection	Direct action or reverse action (However, reverse action only for heat/cool control)		
	Heat/Cool control selection	Control output and event output, auxiliary output		
Auxiliary output	Output type	0 to 20 mAdc or 4 to 20 mA		
	Load resistance	Max. 600Ω		
	Output accuracy	$\pm 0.3 \%$ FS (However, ± 1 digit for 0 to 1 mA)		
External contact input (DI)	Number of inputs	Max. 4 points		
	Function	Up to 4 kinds of setting value (SP) selections, PID group selection, RUN/READY selection, AUTO/MANUAL selection, Auto tuning stop/start, Control action Direct/Reverse selection, SP ramp enable/disable, PV value hold, Max. PV value hold, Min. PV value hold, Timer start/stop, All DO latch cancellation		
	Input rating	Non-voltage contact or open collector		
	Min. detection holding time	0.6 s or longer		
	Allowable ON contact resistance	Max. 250 Ω		
	Allowable OFF contact resistance	Min. $100 \mathrm{k} \Omega$		
	Allowable ON-state residual voltage	Max. 1.0V		
	Open terminal voltage	$5.5 \mathrm{Vdc} \pm 1 \mathrm{~V}$		
	ON terminal current	Approx. 7.5 mA (at short-circuit), Approx. 5.0 mA (at contact resistance of 250Ω)		

Event	Number of output points	2 to 3 points (according to a model)			
	Number of internal event settings	Up to 8 settings			
	Event type - shows that the ON/ OFF is changed at this value. O shows that the ON/ OFF is changed at a point that " 1 U " is added to this value.	PV high limit		PV low limit	
		Direct action	Reverse action	Direct action	Reverse action
		PV high/low limit		Deviation high limit	
		Direct action	Reverse action	Direct action	Reverse action
		Deviation low limit		Deviation high/low limit	
		Direct action	Reverse action	Direct action	Reverse action
		SP high limit		SP low limit	
		Direct action	Reverse action	Direct action	Reverse action
		SP high/low limit		MV high limit	
		Direct action	Reverse action	Direct action	Reverse action
		MV low limit		MV high/low limit	
		Direct action	Reverse action	Direct action	Reverse action
		Heater burnout/Over-current		Heater short-circuit	
		Direct action	Reverse action	Direct action	Reverse action

General specifications	Memory backup	Semiconductor non-volatile memory					
	Power supply voltage	AC power supply model: 85 to $264 \mathrm{Vac}, 50 / 60 \mathrm{~Hz} \pm 2 \mathrm{~Hz}$					
	Power consumption	AC power supply model: Max. 12VA					
	Insulation resistance	Between power supply terminal and secondary terminal, $500 \mathrm{Vdc}, 10 \mathrm{M} \Omega$ or more					
	Dielectric strength	AC power supply model: Between power supply terminal and secondary terminal, 1500Vac for 1 min .					
	Power ON inrush current	AC power supply model: 20A or less					
	Operating conditions	Ambient temperature	0 to $50^{\circ} \mathrm{C}$ (0 to $40^{\circ} \mathrm{C}$ for side-by-side mounting)				
		Ambient humidity	10 to 90% RH (No condensation allowed)				
		Vibration resistance	0 to $2 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz for 2 hrs . in each of X, Y, and Z directions)				
		Shock resistance	0 to $10 \mathrm{~m} / \mathrm{s}^{2}$				
		Mounting angle	Reference plane $\pm 10^{\circ}$				
	Transportation conditions	Ambient temperature	-20 to $+70^{\circ} \mathrm{C}$				
		Ambient humidity	10 to 95% RH (No condensation allowed)				
		Package drop test	Drop height, 60cm, (1 corner, 3 sides, 6 planes, free fall)				
	Console and case material	Console: Polycarbonate Case: Modified PPE					
	Case color	Light gray (DIC650)					
	Conformed standards	EN61010-1, EN61326-1					
	Overvoltage category	Category II (IEC60364-4-433, IEC644-1)					
	Mounting	Panel mounting (with dedicated mounting bracket)					
	Weight	SDC25: Approx. 250 g (including dedicated mounting bracket) SDC26: Approx. 300g (including dedicated mounting bracket)					
Standard accessories	Part name	Model	Q'ty	$\begin{array}{\|l\|} \hline \text { Optional parts } \\ \text { (sold } \\ \text { separately) } \end{array}$	Part name	Model	Q'ty
	Mounting bracket	81409654-001	1		Mounting bracket	81409654-001	1
	User's manual	CP-UM-5288E	1		Current transformer	QN206A (5.8mm-hole dia.)	1
						QN216A (12mm-hole dia.)	1
					Hard cover	81446915-001 (for SDC25)	1
						81446916-001 (for SDC26)	1
					Terminal cover	81446912-001 (for SDC25)	1
						81446913-001 (for SDC26)	1
					Smart loader package	SLP-C35J50 (common for SDC25 and SDC26)	1

Table 1 Input Types and Ranges

Input type	C01 No.	Sensor type	Range	
Thermocouple	1	K	-200 to $+1200^{\circ} \mathrm{C}$	-300 to $+2200^{\circ} \mathrm{F}$
	2	K	0 to $1200^{\circ} \mathrm{C}$	0 to $2200^{\circ} \mathrm{F}$
	3	K	0 to $800^{\circ} \mathrm{C}$	0 to $1500^{\circ} \mathrm{F}$
	4	K	0.0 to $600.0^{\circ} \mathrm{C}$	0 to $1100^{\circ} \mathrm{F}$
	5	K	0.0 to $400.0^{\circ} \mathrm{C}$	0 to $700^{\circ} \mathrm{F}$
	6	K	-200.0 to $+400.0^{\circ} \mathrm{C}$	-300 to $+700^{\circ} \mathrm{F}$
	7	K	-200.0 to $+200.0^{\circ} \mathrm{C}$	-300 to $+400^{\circ} \mathrm{F}$
	8	J	0 to $1200^{\circ} \mathrm{C}$	0 to $2200^{\circ} \mathrm{F}$
	9	J	0.0 to $800.0^{\circ} \mathrm{C}$	0 to $1500^{\circ} \mathrm{F}$
	10	J	0.0 to $600.0^{\circ} \mathrm{C}$	0 to $1100^{\circ} \mathrm{F}$
	11	J	-200.0 to $+400.0^{\circ} \mathrm{C}$	-300 to $+700^{\circ} \mathrm{F}$
	12	E	0.0 to $800.0^{\circ} \mathrm{C}$	0 to $1500^{\circ} \mathrm{F}$
	13	E	0.0 to $600.0^{\circ} \mathrm{C}$	0 to $1100^{\circ} \mathrm{F}$
	14	T	-200.0 to $+400.0^{\circ} \mathrm{C}$	-300 to $+700^{\circ} \mathrm{F}$
	15	R	0 to $1600^{\circ} \mathrm{C}$	0 to $3000^{\circ} \mathrm{F}$
	16	S	0 to $1600^{\circ} \mathrm{C}$	0 to $3000^{\circ} \mathrm{F}$
	17	B	0 to $1800^{\circ} \mathrm{C}$	0 to $3300^{\circ} \mathrm{F}$
	18	N	0 to $1300^{\circ} \mathrm{C}$	0 to $2300^{\circ} \mathrm{F}$
	19	PL II	0 to $1300^{\circ} \mathrm{C}$	0 to $2300^{\circ} \mathrm{F}$
	20	Wre5-26	0 to $1400^{\circ} \mathrm{C}$	0 to $2400^{\circ} \mathrm{F}$
	21	Wre5-26	0 to $2300^{\circ} \mathrm{C}$	0 to $4200^{\circ} \mathrm{F}$
	22	Ni-NiMo	0 to $1300^{\circ} \mathrm{C}$	0 to $2300^{\circ} \mathrm{F}$
	23	PR40-20	0 to $1900^{\circ} \mathrm{C}$	0 to $3400^{\circ} \mathrm{F}$
	24	DIN U	-200.0 to $+400.0^{\circ} \mathrm{C}$	-300 to $+700^{\circ} \mathrm{F}$
	25	DIN L	-100.0 to $+800.0^{\circ} \mathrm{C}$	-150 to $+1500^{\circ} \mathrm{F}$
	26	Golden iron chromel	0.0 K to $360.0^{\circ} \mathrm{K}$	0.0 to $360.0^{\circ} \mathrm{K}$

! Handling Precautions

- The accuracy is $\pm 0.3 \% \mathrm{FS} \pm 1$ digit, and $\pm 0.6 \% \mathrm{FS} \pm 1$ digit for a negative area of the thermocouple.
- The accuracy varies according to the range.

The accuracy of the No. 17 (sensor type B) is $\pm 4.0 \%$ FS for a range of $260^{\circ} \mathrm{C}$ or less, $\pm 0.4 \% \mathrm{FS}$ for 260 to $800^{\circ} \mathrm{C}$.
The accuracy of the No. 23 (sensor type PR40-20) is $\pm 2.5 \%$ FS for 0 to of $300^{\circ} \mathrm{C}$, and $\pm 1.5 \%$ FS for 300 to $800^{\circ} \mathrm{C}$, $\pm 0.5 \%$ FS for 800 to of $1900^{\circ} \mathrm{C}$.
The accuracy of the No. 26 (sensor type golden iron chromel) is $\pm 1.5 \mathrm{~K}$.

- For ranges with a decimal point, tenths are displayed on the line underneath point.

Input type	C01 No.	Sensor type	Range	
RTD	41	Pt100	-200.0 to $+500.0^{\circ} \mathrm{C}$	-300 to $+900^{\circ} \mathrm{F}$
	42	JPt100	-200.0 to $+500.0^{\circ} \mathrm{C}$	-300 to $+900^{\circ} \mathrm{F}$
	43	Pt100	-200.0 to $+200.0^{\circ} \mathrm{C}$	-300 to $+400^{\circ} \mathrm{F}$
	44	JPt100	-200.0 to $+200.0^{\circ} \mathrm{C}$	-300 to $+400^{\circ} \mathrm{F}$
	45	Pt100	-100.0 to $+300.0^{\circ} \mathrm{C}$	-150 to $+500^{\circ} \mathrm{F}$
	46	JPt100	-100.0 to $+300.0^{\circ} \mathrm{C}$	-150 to $+500^{\circ} \mathrm{F}$
	47	Pt100	-100.0 to $+200.0^{\circ} \mathrm{C}$	-150 to $+400^{\circ} \mathrm{F}$
	48	JPt100	-100.0 to $+200.0^{\circ} \mathrm{C}$	-150 to $+400^{\circ} \mathrm{F}$
	49	Pt100	-100.0 to $+150.0^{\circ} \mathrm{C}$	-150 to $+300^{\circ} \mathrm{F}$
	50	JPt100	-100.0 to $+150.0^{\circ} \mathrm{C}$	-150 to $+300^{\circ} \mathrm{F}$
	51	Pt100	-50.0 to $+200.0^{\circ} \mathrm{C}$	-50 to $+400^{\circ} \mathrm{F}$
	52	JPt100	-50.0 to $+200.0^{\circ} \mathrm{C}$	-50 to $+400^{\circ} \mathrm{F}$
	53	Pt100	-50.0 to $+100.0^{\circ} \mathrm{C}$	-50 to $+200^{\circ} \mathrm{F}$
	54	JPt100	-50.0 to $+100.0^{\circ} \mathrm{C}$	-50 to $+200^{\circ} \mathrm{F}$
	55	Pt100	-60.0 to $+40.0^{\circ} \mathrm{C}$	-60 to $+100^{\circ} \mathrm{F}$
	56	JPt100	-60.0 to $+40.0^{\circ} \mathrm{C}$	-60 to $+100^{\circ} \mathrm{F}$
	57	Pt100	-40.0 to $+60.0^{\circ} \mathrm{C}$	-40 to $+140^{\circ} \mathrm{F}$
	58	JPt100	-40.0 to $+60.0^{\circ} \mathrm{C}$	-40 to $+140^{\circ} \mathrm{F}$
	59	Pt100	-10.00 to $+60.00^{\circ} \mathrm{C}$	-10 to $+140^{\circ} \mathrm{F}$
	60	JPt100	-10.00 to $+60.00^{\circ} \mathrm{C}$	-10 to $+140^{\circ} \mathrm{F}$
	61	Pt100	0.0 to $100.0^{\circ} \mathrm{C}$	0 to $200^{\circ} \mathrm{F}$
	62	JPt100	0.0 to $100.0^{\circ} \mathrm{C}$	0 to $200^{\circ} \mathrm{F}$
	63	Pt100	0.0 to $200.0^{\circ} \mathrm{C}$	0 to $400^{\circ} \mathrm{F}$
	64	JPt100	0.0 to $200.0^{\circ} \mathrm{C}$	0 to $400^{\circ} \mathrm{F}$
	65	Pt100	0.0 to $300.0^{\circ} \mathrm{C}$	0 to $500^{\circ} \mathrm{F}$
	66	JPt100	0.0 to $300.0^{\circ} \mathrm{C}$	0 to $500^{\circ} \mathrm{F}$
	67	Pt100	0.0 to $500.0^{\circ} \mathrm{C}$	0 to $900{ }^{\circ} \mathrm{F}$
	68	JPt100	0.0 to $500.0^{\circ} \mathrm{C}$	0 to $900{ }^{\circ} \mathrm{F}$

Input type	C01 No.	Sensor type	Range
Linear input	81	0 to 10 mV	Scaling in the range of -1999 to +9999 Decimal point position changeable
	82	10 to +10 mV	
	83	0 to 100 mV	
	84	0 to 1 V	
	86	1 to 5V	
	87	0 to 5 V	
	88	0 to 10 V	
	89	0 to 20 mA	
	90	4 to 20 mA	

Model Selection Guide

I II III IV V VI VII VII
Example: C25TROUA1000

I	II	III	IV	V	VI	VII	VIII	Specifications	
Basic model No.	Mounting	Control output	$\begin{aligned} & \text { PV } \\ & \text { input } \end{aligned}$	Power supply	$\begin{array}{\|c\|} \hline \text { Option } \\ 1 \end{array}$	Option 2	Additional processing		
C25								Mask size 48mm x 96m	
C26								Mask size $96 \mathrm{~mm} \times 96 \mathrm{~mm}$	
	T							Panel mounting type	
								Control output 1	Control output 2
		R0						Relay contact output	-
		vo						Voltage pulse output (for SSR drive)	-
		VC						Voltage pulse output (for SSR drive)	Current output
		VV						Voltage pulse output (for SSR drive)	Voltage pulse output (for SSR drive)
		C0						Current output	-
		CC						Current output	Current output
			U					Universal	
				A				AC model (100 to 240 Vac) $50 / 60 \mathrm{~Hz}$	
				D				DC model ($24 \mathrm{Vac} / \mathrm{dc}$) (available soon)	
					1			Event relay output: 3 points	
					2			Event relay output: 3 points, Auxiliary output (current output)	
				(Note 1)	4			Event relay output: 2 points (independent contact),	
				(Note 1)	5			Event relay output: 2 points (independent contact), Auxiliary output (current output)	
						0		-	
					(Note 2)	1		Current transformer inputs: 2 points, Digital inputs: 4 points	
					(Note 2)	2		Current transformer inputs: 2 points, Digital inputs: 4 points, RS-485 Communication	
							00	No additional processing	
Note 1. Can not be selected for DC model.							D0	Inspection Certificate provided	
							Y0	Complying with the traceability certification	

- C25

- C26

! Handling Precautions

To fasten this controller onto the panel, tighten a mounting bracket screws, and turn one more half turn when there is no play between the bracket and panel. Excessively tightening the screws may deform the controller case.

- Panel cutout diagram

! Handling Precautions

- When three or more units are gang-mounted horizontally, the maximum allowable ambient temperature is $40^{\circ} \mathrm{C}$.
- For water-proof installation, install the attached gasket and then mount the device as a stand-alone device.

Part Names and Functions

(1) Upper display:

Displays PV values (present temperature, etc.) or setup items.
(2) Lower display: Displays SP values (set temperature, etc.) and other parameter values. When the lower display shows the SP value, the "sp" lamp lights up. When the display shows the manipulated variable (MV), the "out" lamp lights up.
(3) Mode indicator
man: Lights when MANUAL (manual mode).
ev1 to ev3: Lights when event relays are ON.
ot1, ot2: Lights when the control output is ON.
(4) Multi-status indicator:

In the combination of the lighting
condition and the lighting status as a group, the priority 3 groups can be set.
(5) [mode] key: The operation which has been set beforehand can be done by pushing the key for 1s or more.
(6) [display] key: Used to change the display contents in the operation display mode. Display is returned from bank setup display to operation display.
(7) <, \vee, \wedge key: Used for incrementing numeric values and performing arithmetic shift operations.
(8) [para] key: Switches the display.
(9) [enter] keys: Used to set the setup values at the start of change and during the change.
(10) Loader connector: Connects to a personal computer by using a dedicated cable supplied with the Smart Loader Package.

- Connection of C25/26

- Precautions on the use of self-tuning function

The final control devices must be powered up simultaneously with or prior to the instrument when the self-tuning function is to be used.

- Precautions on wiring

1. Isolation within instrument

Solid line portions " _ " are isolated.
Dotted line portions " ----" are not isolated.

Power supply		Control output 1 Control output 2
	PV input	
Current Transformer input 1		Auxiliary output
Current Transformer input 2		
Loader communication	Internal	
	Digital input 1	Circuit
Digital input 2		Event output 1 (Note 1) Event output 2 (Note 1) Digital input 3
Digital input 4		
RS-485 Communication output 3		

Availability of input and output is based on a model number.
Note 1 In case of independent contact, the part between the event output 1 and the event output 2 is isolated.

2. Preventive measures against noise of instru-

 ment power supply(1) Reduction of noise

Even though the noise is small, the noise filter is used to eliminate the effect of the noise as much as possible.

(2) When noise is excessive

If a large amount of noise exists, appropriate isolation transformer and line filter are used to eliminate the effect of the noise.

3. Installation environment noise sources and preventive measures
Generally, the following may be the noise sources in the installation environment:
Relay and contact, electromagnetic coil, solenoid valve, power supply line (particularly, 100Vac or more), motor commutator, phase angle control SCR, radio communication device, welding machine, high-voltage ignitor, etc.

Preventive measures against fast rise noise

Use of CR filter is effective to prevent fast rise noise. Recommended filter:

Yamatake's model No. 81446365-001
(Equivalent to 953M500333311 made by Matsuo Electric.)

4. Wiring precautions

(1) After taking the noise preventive measures, do not bundle the primary and secondary power cables together or put both power cables in the same conduit or duct.
(2) Keep the input/output and communication lines 50 cm or more away from the power lines and power supply lines having a voltage of 100 Vac or more.
Additionally, do not put these lines together in the same conduit or duct.

5. Inspection after wiring

After the wiring work has been completed, always inspect and check the wiring status. Great care should be taken since incorrect wiring may cause the instrument to malfunction or severe personal injury.

\triangle RESTRICTIONS ON USE

This product has been designed, developed and manufactured for general-purpose application in machinery and equipment. Accordingly, when used in the applications outlined below, special care should be taken to implement a fail-safe and/or redundant design concept as well as a periodic maintenance program.

- Safety devices for plant worker protection - Start/stop control devices for transportation and material handling machines
- Aeronautical/aerospace machines - Control devices for nuclear reactors

Never use this product in applications where human safety may be put at risk.

Yamatake Corporation

Advanced Automation Company
1-12-2 Kawana, Fujisawa
Kanagawa 251-8522 Japan Printed in Japan. (H)
URL: http://www.azbil.com

