Product Specification

2 Gigabit Long-Wavelength 2x5 Pin SFF Transceiver FTR.J1319F1xTL

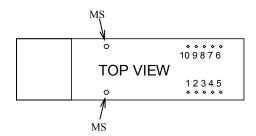
PRODUCT FEATURES

- Up to 2.125Gb/s bi-directional data links
- Standard 2x5 pin SFF footprint (MSA compliant)
- 1310nm Fabry-Perot laser transmitter
- Duplex LC connector
- Very low jitter
- Up to 10 km on 9/125μm SMF
- Metal enclosure, for lower EMI
- Single 3.3V power supply
- Low power dissipation <700mW
- Industrial operating temperature range: -40°C to 85°C

APPLICATIONS

- 1.25 Gb/s 1000Base-LX Ethernet
- Dual Rate 1.063 / 2.125 Gb/s Fibre Channel

Finisar's FTRJ1319F1xTL Small Form Factor (SFF) transceivers comply with the 2x5 standard package defined by the Small Form Factor Multi-Sourcing Agreement (MSA)¹. They are simultaneously compatible with Gigabit Ethernet as specified in IEEE Draft P802.3z/D5.0² and Fibre Channel FC-PH, PH2, PH3³ and FC-PI 13.0⁴.


PRODUCT SELECTION

FTRJ1319F1xTL

X	G	2 Grounding Pins, Short EMI shield
	M	6 Grounding Pins, Short EMI shield
	K	2 Grounding Pins, Long EMI shield
	Н	6 Grounding Pins, Long EMI shield

T	ъ.	T	•	4 •
I.	Pın	Desc	crib	tions

Pin	Symbol	Name/Description	Logic Family
MS	MS	Mounting Studs are for mechanical attachment. Chassis	NA
		ground is internally isolated from circuit ground.	
		Connection to chassis ground is recommended.	
1	$V_{\rm EER}$	Receiver Ground (Common with Transmitter Ground)	NA
2	V_{CCR}	Receiver Power Supply	NA
3	SD	Signal Detect. Logic 1 indicates normal operation.	LVTTL
4	RD-	Receiver Inverted DATA out. AC Coupled.	See Rx spec.
5	RD+	Receiver Non-inverted DATA out. AC Coupled	See Rx spec.
6	V_{CCT}	Transmitter Power Supply	NA
7	V_{EET}	Transmitter Ground (Common with Receiver Ground)	NA
8	T_{DIS}	Transmitter Disable	LVTTL
9	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	See Tx spec
10	TD-	Transmitter Inverted DATA in. AC Coupled.	See Tx spec.

II. **Absolute Maximum Ratings**

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	0.5		5.0	V	
Storage Temperature	T_{S}	-40		85	°C	
Case Operating Temperature	T_{A}	-40		85	°C	
Relative Humidity	RH	0		85	%	1
Lead Soldering Temperature/Time				260/10	°C/s	

Notes:

1. Non condensing.

III. Electrical Characteristics ($T_A = -40 \text{ to } 85 \text{ °C}$, $V_{CC} = 3.0 \text{ to } 3.60 \text{ Volts}$)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.00		3.60	V	
Supply Current	Icc			300	mA	
Transmitter						
Input differential impedance	R _{in}		100		Ω	1
Single ended data input swing	Vin,pp	250		1200	mV	
Transmit Disable Voltage	V_{D}	Vcc-1.3		Vcc	V	
Transmit Enable Voltage	$ m V_{EN}$	Vee		Vee+ 0.8	V	2
Transmit Disable Assert Time				10	us	
Receiver						
Single ended data output swing	Vout,pp	300		800	mV	3
Data output rise time	$t_{\rm r}$		100	175	ps	4
Data output fall time	t_{f}		100	175	ps	4
Signal Detect Normal	V _{SD norm}	Vcc - 0.5		Vcc	V	5
Signal Detect Fault	$V_{SD \; fault}$	Vee		Vee+0.5	V	5
Power Supply Rejection	PSR	100			mVpp	6
Deterministic Jitter Contribution	RX ΔDJ			50	ps	7
(p-p)						
Total Jitter Contribution (p-p)	RX ΔTJ			120	ps	8

Notes:

- 1. AC coupled.
- 2. Or open circuit.
- 3. Into 100Ω differential termination.
- 4. 20 80 %
- 5. Signal detect is LVTTL. Logic 1 indicates normal operation; logic 0 indicates no signal detected.
- 6. Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.
- 7. Measured with DJ-free data input signal. In actual application, output DJ will be the sum of input DJ and ΔDJ.
- 8. If measured with TJ-free data input signal. In actual application, output TJ will be given by:

$$TJ_{out} = DJ_{\scriptscriptstyle IN} + \Delta DJ + \sqrt{\left(TJ_{\scriptscriptstyle IN} - DJ_{\scriptscriptstyle IN}\right)^2 + \left(\Delta TJ - \Delta DJ\right)^2}$$

IV. Optical Characteristics ($T_A = -40 \text{ to } 85 \text{ °C}$, $V_{CC} = 3.0 \text{ to } 3.60 \text{ Volts}$)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Output Opt. Power	P _{OUT}	-9.5		-3	dBm	1
Optical Wavelength	λ	1270		1355	nm	2
Spectral Width	σ			3	nm	2
Optical Modulation Amplitude	OMA	174			μW	2,3
Optical Rise/Fall Time	t_r/t_f		100	160	ps	4
RIN				-120	dB/Hz	
Deterministic Jitter Contribution	TX ΔDJ		20	56.5	ps	5
Total Jitter Contribution	ΤΧ ΔΤΙ		<65	119	ps	6
Extinction Ratio	ER	9				
Receiver						
Receiver Sensitivity = 1.06 Gb/s	Rx _{SENS}			-22	dBm	7, 8
Receiver Sensitivity = 2.125 Gb/s	Rx _{SENS}			-21	dBm	7, 8
Receiver Sensitivity = 1.25 Gb/s	Rx _{SENS}			-22	dBm	7, 8
Stressed RX sens. =1.0625 Gb/s		0.055			mW	
Stressed RX sens. =2.125 Gb/s		0.096			mW	
Stressed RX sens. =1.25 Gb/s			-18	-14.5	dBm	
Average Received Power	Rx _{MAX}			0	dBm	
Receiver Elec. 3 dB cutoff freq.				1500	MHz	
Optical Center Wavelength	$\lambda_{ m C}$	1270		1600	nm	
Return Loss		12			dB	
Signal Detect Assert	P_A		-23	-19	dBm	
Signal Detect De-Assert	P_{D}	-30	-25		dBm	
Signal Detect Hysteresis	P _A - P _D	0.5	_		dB	

Notes:

- Class 1 Laser Safety per FDA/CDRH and IEC-825-1 regulations.
- 2. Also specificied to meet curves in FC-PI 13.0 Figures 18 and 19, which allow trade-off between wavelength, spectral width and OMA.
- 3. Equivalent extinction ratio specification for Fibre Channel. Allows smaller ER at higher average
- 4. Unfiltered, 20-80%. Complies with IEEE 802.3 (Gig. E), FC 1x and 2x eye mask when filtered.
- 5. Measured with DJ-free data input signal. In actual application, output DJ will be the sum of input DJ and Δ DJ.
- 6. If measured with TJ-free data input signal. In actual application, output TJ will be given by:

$$TJ_{OUT} = DJ_{IN} + \Delta DJ + \sqrt{\left(TJ_{IN} - DJ_{IN}\right)^2 + \left(\Delta TJ - \Delta DJ\right)^2}$$

- Measured with conformance signals defined in FC-PI 13.0 specifications.
 Measured with PRBS 2⁷-1 at 10⁻¹² BER.

V. General Specifications

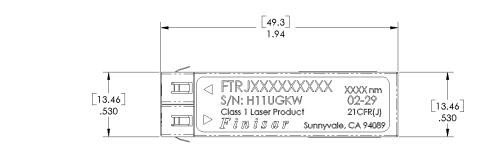
Parameter	Symbol	Min	Тур	Max	Units	Ref.
Data Rate	BR		1.0625,		Gb/sec	1
			1.25,			
			2.125			
Bit Error Rate	BER			10 ⁻¹²		2
Max. Supported Link Length on	L_{MAX1}		10		km	3
9/125μm SMF @ 2x Fibre Channel						
Max. Supported Link Length on	L_{MAX1}		10		km	4
9/125µm SMF @ Gigabit Ethernet						

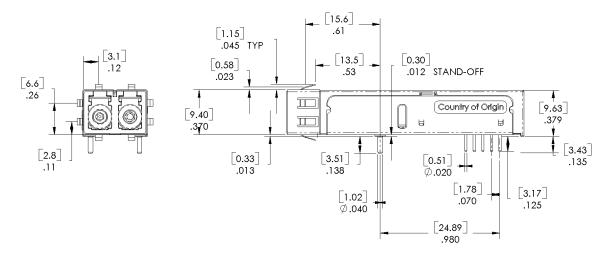
Notes:

- 1. Gigabit Ethernet and 1x, 2x Fibre Channel compatible, per IEEE 802.3 and FC-PI 13.0, respectively. Typical maximum data rate extends to 2.5Gb/s.
- 2. Tested with PRBS 2⁷-1 test pattern.
- 3. Dispersion limited per FC-PI Rev. 13
- 4. Attenuation of 0.55 dB/km is used for the link length calculations. <u>Distances are indicative only.</u> Please refer to the Optical Specifications in Table IV to calculate a more accurate link budget based on specific conditions in your application.

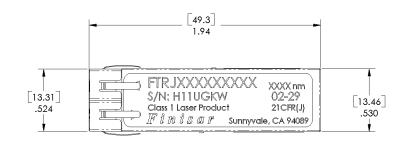
VI. Environmental Specifications

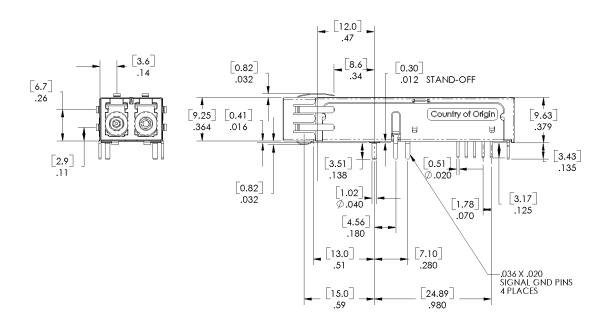
Finisar SFF transceivers have an extended operating temperature range from –40°C to +85°C case temperature.

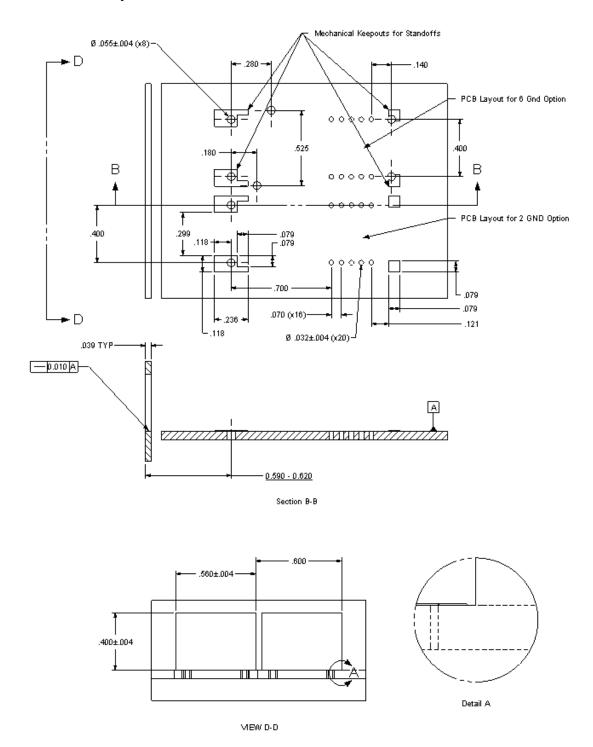

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	-40		85	°C	
Storage Temperature	T_{sto}	-40		85	°C	


VII. Regulatory Compliance

Finisar transceivers are Class 1 Laser Products and comply with US FDA regulations. These products are certified by TÜV and CSA to meet the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950. Copies of certificates are available at Finisar Corporation upon request.


VIII. Mechanical Specifications


Finisar's Small Form Factor (SFF) transceivers comply with the standard dimensions defined by the Small Form Factor Multi-Sourcing Agreement (MSA).


FTRJ1319F1GTL

FTRJ1319F1MTL

IX. PCB Layout and Bezel Recommendations

Minimum Recommended Pitch is 0.600"

X. References

- 1. Small Form Factor (SFF) Transceiver Multi-source Agreement (MSA). January 6, 1998.
- 2. "IEEE Draft P802.3z/D5.0 'Media Access Control (MAC) Parameters, Physical Layer, Repeater and Management Parameters for 1000Mb/s Operation". IEEE Standards Department, 1998.
- 3. "Fibre Channel Physical and Signaling Interface (FC-PH, FC-PH2, FC-PH3)". American National Standard for Information Systems.
- 4. "Fibre Channel Draft Physical Interface Specification (FC-PI 13.0)". American National Standard for Information Systems.
- 5. Small Form-factor Pluggable (SFP) Transceiver Multi-source Agreement (MSA), September 14, 2000.

XI. For More Information

Finisar Corporation 1308 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. (408) 548-1000 Fax (408) 541-6138 sales@finisar.com www.finisar.com