# TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC TA1384FNG Mixer/Oscillator and PLL IC for TV/VCR Tuner 

The TA1384FNG is a tuner IC for TV and VCR applications that integrates a PLL block and mixer, oscillator and IF amplifier on a single chip.

The control data of the PLL block conforms to $\mathrm{I}^{2} \mathrm{C}$-bus formats.
Small flat package: SSOP24 ( 0.65 mm pitch)


## Features

- Vcc: 5V (typ.)
- Two-band mixer
- Two-band oscillator
- IF output driver
- Asymmetrical IF output
- $\mathrm{I}^{2} \mathrm{C}$ bus format control
- $33-\mathrm{V}$ high voltage tuning amplifier built-in
- Four-bit bandswitch drive transistor
- Frequency steps: $31.25 \mathrm{kHz}, 50 \mathrm{kHz}, 62.5 \mathrm{kHz}$ (when a 4 MHz crystal is used)
- Four-programmable chip address
- Power on reset circuit
- Automatic changeover between $1 / 4$ and $1 / 2$ prescaler through data input
- Package: Pb -free


## Power on reset status

- Frequency step: 62.5 kHz
- Charge pump current: Low
- Counter data: ALL [0]
- Band driver: OFF
- Tuning amplifier: OFF (Charge pump = sink mode)
- Local oscillator and mixer: UHF mode

Note 1: This device is sensitive to surge voltage and electrostatic discharge. Handle with care.

## Block Diagram



Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

## Terminal Name

| Pin No. | Pin Name |
| :---: | :--- |
| 1 | SCL input |
| 2 | SDA in/output |
| 3 | ADR (address setting) |
| 4 | Band 1 output (VHF mode) |
| 5 | Band 2 output (VHF mode) |
| 6 | Band 3 output (UHF or FMT) |
| 7 | Band 4 output (UHF or FMT) |
| 8 | Mixer output 1 |
| 9 | Mixer output 2 |
| 10 | GND 1 |
| 11 | VHF RF input |
| 12 | UHF RF input |
| 13 | VHF oscillator -B1 |
| 14 | VHF oscillator -C2 |
| 15 | VHF oscillator -C1 |
| 16 | UHF oscillator 1 |
| 17 | UHF oscillator 1 |
| 18 | GND 2 |
| 19 | Vcc |
| 20 | IF output |
| 21 | Vt output |
| 22 | NF |
| 24 | Crystal input |
|  | GND 3 |
| 14 |  |

## Terminal Function

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

Pin No. | Pin Name. |
| :---: | Function

| Pin No. | Pin Name. | Function | Interface |
| :---: | :---: | :---: | :---: |
| 8 9 | Mixer Output | Mixer output pins <br> A tank circuit is connected between the pins for tuning. <br> Since these are open collector outputs, be sure to connect with a power supply through a load (resistance, coil). |  |
| 10 | GND 1 | Ground pin | - |
| 11 | VHF RF Input | RF signal input pin for the VHF band. Asymmetrical input type |  |
| 12 | UHF RF Input | RF signal input pin for the UHF band. Asymmetrical input type |  |
| $\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$ | VHF Oscillator | Local oscillator for the VHF band The oscillator type is symmetrical amplifier |  |
| $16$ $17$ | UHF Oscillator | Local oscillator for the UHF band The oscillator type is symmetrical amplifier. |  |



## Maximum Ratings

| CHARACTERISTIC | PIN No | SYMBOL | RATING | UNIT |
| :--- | :---: | :---: | :---: | :---: |
| Vcc | 19 | Vcc | 6 | V |
| Tuning Amplifier Voltage Applied | 21 | VBT | 38 | V |
| Bus Data Voltage Applied | 1,2 | SDA,SCL | $-0.3 \sim 6$ | V |
| Pin for DC Voltage Applied Except <br> for GND and the Above Pins | - | VIN | $-0.3 \sim$ Vcc+0.3 | V |
| RF Signal Input Level for Mixer | 11,12 | fin | 120 | dBuV |
| Power Dissipation | - | PD | $890($ Note 3$)$ | mW |
| Operating Temperature | - | Topr | $-20 \sim 85$ | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | - | Tstg | $-55 \sim 150$ | ${ }^{\circ} \mathrm{C}$ |

Note 2: The absolute maximum ratings of a semiconductor device are a set of specified parameter values that must not be exceeded during operation, even for an instant.

If any of these rating are exceeded during operation, the electrical characteristics of the device may be irreparably altered, in which case the reliability and lifetime of the device can no longer be guaranteed.

Moreover, any exceeding of the ratings during operation may cause breakdown, damage and/or degradation in other equipment.

Applications using the device should be designed so that no maximum rating will ever be exceeded under any operating conditions.

Before using, creating and/or producing designs, refer to and comply with the precautions and conditions set forth in this documents.
Note 3: $50 \times 50 \times 1.6 \mathrm{~mm}, \mathrm{Cu} 40 \%$ board used.
When using the device at above $\mathrm{Ta}=25^{\circ} \mathrm{C}$, decrease the power dissipation by 7.2 mW for each increase of $1^{\circ} \mathrm{C}$.

Operating Supply Voltage

| Pin No. | SYMBOL | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | Vcc | 4.5 | 5.0 | 5.5 | V |

## Electric Characteristics

## DC Characteristics

(Unless otherwise specified, Vcc $=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ )

| CHARACTERISTICS | SYMBOL | TEST CIRCUIT | BAND | TEST CONDITION | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply and Current | Icc1 | 1 | VHF | Bus data B1 = ON, (pin 4: Open) | 49 | 62 | 75 | mA |
|  | Icc2 |  | UHF | Bus data B4 = ON, (pin 7: Open) | 52 | 65.5 | 79.5 |  |

## MIX / OSC / IF Block

(Unless otherwise specified, Vcc $=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ )

| CHARACTERISTICS | SYMBOL | TEST CIRCUIT | BAND | TEST CONDITION (Notes $4 \& 5$ ) | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conversion Gain (see 1) | CG | 2 | VHF | $\mathrm{RF}=55.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | 20.5 | 23.5 | 26.5 | dB |
|  |  |  | VHF | $\mathrm{RF}=367.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | 21.5 | 24.5 | 27.5 |  |
|  |  |  | UHF | $\mathrm{RF}=373.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | 25.0 | 28.0 | 31.0 |  |
|  |  |  | UHF | $\mathrm{RF}=801.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | 25.5 | 28.5 | 31.0 |  |
| Noise Figure (see 2) | NF | 3 | VHF | $\mathrm{RF}=55.25 \mathrm{MHz}$ | - | 11.0 | - | dB |
|  |  |  | VHF | $\mathrm{RF}=367.25 \mathrm{MHz}$ | - | 10.0 | - |  |
|  |  |  | UHF | $\mathrm{RF}=373.25 \mathrm{MHz}$ | - | 8.0 | - |  |
|  |  |  | UHF | $\mathrm{RF}=801.25 \mathrm{MHz}$ | - | 8.0 | - |  |
| IF Output Power Level(see 3) | Ifp | 2 | VHF | $\mathrm{RF}=55.25 \mathrm{MHz}$ | 8.5 | 10 | - | dBmW |
|  |  |  | VHF | $\mathrm{RF}=367.25 \mathrm{MHz}$ | 8.5 | 10 | - |  |
|  |  |  | UHF | $\mathrm{RF}=373.25 \mathrm{MHz}$ | 8.5 | 10 | - |  |
|  |  |  | UHF | $\mathrm{RF}=801.25 \mathrm{MHz}$ | 8.5 | 10 | - |  |
| Conversion Gain Shift (see 4) | CGs | 2 | VHF | RF $=55.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | - | - | $\pm 0.5$ | dB |
|  |  |  | VHF | $\mathrm{RF}=367.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | - | - | $\pm 0.5$ |  |
|  |  |  | UHF | RF $=373.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | - | - | $\pm 0.5$ |  |
|  |  |  | UHF | RF $=801.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | - | - | $\pm 0.5$ |  |
| Frequency Shift (The PLL is not operating.) (see 5) | $\triangle \mathrm{fB}$ | 2 | VHF | OSC $=101 \mathrm{MHz}$ | - | $\pm 100$ | - | kHz |
|  |  |  | VHF | $\mathrm{OSC}=413 \mathrm{MHz}$ | - | $\pm 300$ | - |  |
|  |  |  | UHF | OSC $=419 \mathrm{MHz}$ | - | $\pm 200$ | - |  |
|  |  |  | UHF | OSC $=847 \mathrm{MHz}$ | - | $\pm 800$ | - |  |
| 1\% Cross Modulation (see 6) | CM | 4 | VHF | $\mathrm{fd}=55.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | - | 88 | - | dBuV |
|  |  |  | VHF | $\mathrm{fd}=367.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | - | 84 | - |  |
|  |  |  | UHF | $\mathrm{fd}=373.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | - | 83 | - |  |
|  |  |  | UHF | $\mathrm{fd}=801.25 \mathrm{MHz}-30 \mathrm{dBmWin}$ | - | 81 | - |  |
| $3^{\text {rd }}$ Inter Modulation for MOP block (see 7) | IM3 | 4 | VHF | $\mathrm{fd}=55.25 \mathrm{MHz}-35 \mathrm{dBmWin}$ | - | 74 | - | dB |
|  |  |  | VHF | $\mathrm{fd}=367.25 \mathrm{MHz}-35 \mathrm{dBmWin}$ | - | 70 | - |  |
|  |  |  | UHF | $\mathrm{fd}=373.25 \mathrm{MHz}-35 \mathrm{dBmWin}$ | - | 62 | - |  |
|  |  |  | UHF | $\mathrm{fd}=801.25 \mathrm{MHz}-35 \mathrm{dBmWin}$ | - | 61 | - |  |
| 6ch beat (see 8) | B6 | 4 | VHF | $\begin{aligned} & \mathrm{fp}=83.25 \mathrm{MHz}, \mathrm{fs}=87.75 \mathrm{MHz} \\ & -30 \mathrm{dBmW} \text { input } \end{aligned}$ | - | 62 | - | dB |

Note 4: IF output frequency: 45.75 MHz
Note 5: IF output load: $75 \Omega$

## PLL / Band Block

(Unless otherwise specified, Vcc $=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ )

| CHARACTERISTICS | SYMBOL | TEST CIRCUIT | TEST CONDITION | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Band Port Drive Current | IBD-1 | 1 | Pin 4, maximum drive current | - | - | 7 | mA |
|  | IBD-2 |  | Pin 5, maximum drive current | - | - | 10 |  |
|  | IBD-3 |  | Pin 6, maximum drive current | - | - | 3 |  |
|  | IBD-4 |  | Pin 7, maximum drive current |  |  | 7 |  |
| Band Port Drive Maximum Current | IBDmax | 1 | Maximum drive current / 2 port ON | - | - | 17 | mA |
| Band Port Drive Voltage Drop | VBDsat | 1 | With each port at maximum current drive. 1 port ON | - | 0.15 | 0.2 | V |
| Tuning Amplifier Output Voltage (Close Loop) | Vt out | 3 | Isink $=1.5 \mathrm{~mA}$ | 0.3 | - | 33 | V |
| Tuning Amplifier Maximum Current | Ivt | 3 | $\mathrm{VBT}=33 \mathrm{~V}$ | - | - | 1.5 | mA |
| Crystal Negative Resistance | XtR | 1 | 4-MHz crystal used | 1 | 2 | - | $\mathrm{k} \Omega$ |
| Crystal Operating Range | Xo fin | 1 | - | - | 4 | - | MHz |
| Crystal External Input Level | Xo extl | 2 | Ref. freq. $=4 \mathrm{MHz}$ input | - | 400 | - | mVp-p |
| Ratio Setting Range | N | - | 15-bit counter | 1024 | - | 32767 | Ratio |
| Logic Input Low Voltage | VBsL | 1 | SDA, SCL pin | -0.3 | - | 1.5 | V |
| Logic Input High Voltage | VBsH | 1 | SDA, SCL pin | 2.7 | - | $\begin{array}{r} \hline \mathrm{Vcc} \\ +0.3 \\ \hline \end{array}$ | V |
| Logic Input Current (Low) | I BsL | 1 | SDA, SCL pin | -20 | - | 10 | uA |
| Logic Input Current (High) | I BsH | 1 | SDA, SCL pin | -10 | - | 20 | uA |
|  |  |  | $C P=0$ | $\pm 40$ | $\pm 55$ | $\pm 70$ |  |
|  |  |  | $C P=1$ | $\pm 190$ | $\pm 250$ | $\pm 310$ |  |
| ACK Output Voltage | VACK | 1 | ISINK $=3 \mathrm{~mA}$ | - | - | 0.4 | V |

The range of the crystal external input level (Xo extl) in the internal circuit configuration is $300-650 \mathrm{mVp}$-p (when a signal of 4 MHz is applied)
$I^{2} \mathrm{C}$ Bus Line Characteristic

| CHARACTERISTICS | SYMBOL | TEST CONDITION | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCL Clock Frequency | fscl | - | 0 | - | 400 | kHz |
| Bus Free Time between a STOP and a START Condition | tBUF |  | 1.3 | - | - | $\mu \mathrm{S}$ |
| Hold Time <br> Condition (Repeated) START | tHD;STA |  | 0.6 | - | - | $\mu \mathrm{S}$ |
| Low Period of the SCL Clock | tLOW |  | 1.3 | - | - | $\mu \mathrm{S}$ |
| High Period of the SCL Clock | tHIGH |  | 0.6 | - | - | $\mu \mathrm{S}$ |
| Set-up Time for a Repeated START Condition | tSU;STA |  | 0.6 | - | - | $\mu \mathrm{S}$ |
| Data Hold Time | tHD;DAT |  | 0 | - | 0.9 | $\mu \mathrm{S}$ |
| Data Set-up Time | tSU;DAT |  | 100 | - | - | $\mu \mathrm{S}$ |
| Rise Time of both SDA and SCL Signal | tR |  | - | - | 300 | $\mu \mathrm{S}$ |
| Fall Time of both SDA and SCL Signals | tF |  | - | - | 300 | $\mu \mathrm{S}$ |
| Set up Time for STOP Condition | tsU;STO |  | 0.6 | - | - | $\mu \mathrm{S}$ |



Figure 1: $I^{2} \mathrm{C}$-bus data timing chart (falling edge timing)

Timing charts may be simplified for explanatory purposes.

## Test Conditions

Conversion Gain (see 1)
RF Input level $=-30 \mathrm{dBmW}$ (untuned)
Noise Figure (see 2)
Noise figure meter used. Direct reading. (DSB)
IF Output Power Level (see 3)
Measure IF output level when it is maximum level.
Conversion Gain Shift (see 4)
The conversion gain shift is defined as a change in conversion gain when supply voltage varies from Vcc $=5 \mathrm{~V}$ to 4.5 V or from Vcc $=5 \mathrm{~V}$ to 5.5 V .

Frequency Shift (the PLL is not operating) (see 5)
The frequency shift is defined as a change in oscillator frequency when supply voltage varies from Vcc $=5 \mathrm{~V}$ to 4.5 V or from Vcc $=5 \mathrm{~V}$ to 5.5 V .

1\% Cross Modulation (see 6)

- $\mathrm{fd}=\mathrm{fp}:(\mathrm{fd}$ input level $=-30 \mathrm{dBmW})$
- $\quad$ fud $=f p \pm 12 \mathrm{MHz}, 100 \mathrm{kHz}$ AM $30 \%$

Input two signals, and increase the fud input level.
Measure the fud input level when the suppression level reaches 56.5 dB .
$3^{\text {rd }}$ Internal Modulation (see 7)

- $\quad \mathrm{fd}=\mathrm{fp}:(\mathrm{fd}$ Input level $=-35 \mathrm{dBmW})$
- $\quad$ fud $=\mathrm{fp} \pm 1 \mathrm{MHz}:($ fud input level $=-35 \mathrm{dBmW})$

Input two signals, measure the suppression level.

6 -ch beat (see 8)

- $\mathrm{fp}=83.25 \mathrm{MHz}:($ input level $=-30 \mathrm{dBmW})$
- $\mathrm{fs}=87.75 \mathrm{MHz}:($ input level $=-30 \mathrm{dBmW})$

Input two signals, measure the suppression level of the IF / undesired signal.
*Undesired signal $=(f p+f s)-$ fosc $=(83.25+87.75)-129=42 \mathrm{MHz}$.

## Description of PLL Block Operation

## - $\mathrm{I}^{2} \mathrm{C}$ bus control -

The TA1384FNG conforms to the $\mathrm{I}^{2} \mathrm{C}$-bus format.
$\mathrm{I}^{2} \mathrm{C}$-bus mode enables two-way bus communications with Write Mode, which receives data, and Read Mode, which sends data.

Write Mode and Read Mode are set using the last bit (R/W bit) of the address byte. If the last address bit is set to [0], Write Mode is selected; if it is set to [1], Read Mode is selected.

Addresses can be set using the hardware bits, and four programmable addresses are available. With this setting, multiple frequency synthesizers can be used in the same $I^{2} \mathrm{C}$-bus. The address for the hardware bit setting can be selected by applying voltage to the address setting pin (ADR: pin 3).An address is selected according to the set bits.

If the correct address bytes are received, the serial data (SDA) line is "Low" during acknowledgment; when Write Mode is set, the serial data (SDA) line is "Low" during the next acknowledgment if the data byte is programmed. The IC is equipped with $1 / 2$ and $1 / 4$ built-in prescalers, and it is possible to change from one prescaler to the other using input data. When a frequency step of 62.5 kHz is selected, the $1 / 2$ prescaler operates with a divider ratio of 1024 to 4095 , and the $1 / 4$ prescaler operates with a divider ratio of 4096 to 32767.
When the frequency step selected is 31.25 kHz and 50 kHz , the $1 / 2$ prescaler operates with a divider ratio of 1024 to 8191 , and the $1 / 4$ prescaler operates with a divider ratio of 8192 to 32767 .
In addition, even if the prescaler is changed, the data is calculated in the internal circuit and is processed so that the comparison frequency in each the frequency step does not change.
For a frequency step of $62.5 \mathrm{kHz}: 15.625 \mathrm{kHz}$ comparison frequency
For a frequency step of $50 \mathrm{kHz}: 12.5 \mathrm{kHz}$ comparison frequency
For a frequency step of $31.25 \mathrm{kHz}: 7.8125 \mathrm{kHz}$ comparison frequency
This IC incorporates a built-in power-on reset circuit for which a detection voltage of approximately 1.4 V has been set. When the Vcc is supplied, a delay or stoppage in a power supply voltage close to this detection voltage may cause the power-on reset circuit to malfunction, in which case there is a risk that some data may not be received even after the recommended voltage has been restored.

## A) Write Mode (Setting Command)

When WRITE mode is set so that the different types of information may be received, byte 1 is used to specify the address data; byte 2 and byte 3 , the frequency data; byte 4 , function setting data such as the divider ratio setting; and byte 5 , the output port data (bandswitch data).

Data are latched and transferred one after the other in the case of byte 3 , byte 4 and byte 5 , while byte 2 and byte 3 are latched and transferred as a two-byte set (byte $2+$ byte 3 ).

Once a correct address is received and acknowledged, the data type is determined by whether the first bit of the next byte is set to [0] or [1]. [0] indicates frequency data, while [1] indicates function setting or output data.

Until the $\mathrm{I}^{2} \mathrm{C}$-bus STOP CONDITION is detected, the additional data can be input without transmitting the address data again. (For example: Frequency sweep is possible with additional frequency data.)

If data transmission is aborted, data programmed before the abort are valid.

## BYTE 1

Hardware bit setting of byte 1 is possible using the address data.
The hardware bit is set with the voltage applied to the address-setting pin (ADR: pin 3).

## BYTE 2, BYTE 3

Byte 2, byte 3 are stored in the 15 -bit shift register with counter data for the frequency setting, and control the 15 -bit programmable counter ratio.

The program frequency can be calculated in the following formula:
fosc $=4 \times f r \times N$.

| fosc | : Program frequency |
| :--- | :--- |
| 4 | : Prescaler |
| fr | : Phase comparator reference frequency (step frequency) |
| N | : Counter total divider ratio |

fr is calculated using the crystal oscillator and the reference frequency divider ratio set in byte 4 (control byte): fr = crystal oscillator frequency / reference divider ratio.

The reference frequency divider ratio can be set to $1 / 512,1 / 320$, and $1 / 256$.
When using a $4-\mathrm{MHz}$ crystal oscillator, $\mathrm{fr}=7.8125 \mathrm{kHz}, 12.5 \mathrm{kHz}$, and 15.625 kHz .
The step frequency is $31.25 \mathrm{kHz}, 50.0 \mathrm{kHz}$, and 62.5 kHz .

## BYTE 4

Byte 4 is a control byte used to set the different functions. Bit $2(\mathrm{CP})$ and controls the output current of the charge-pump circuit. When bit 2 is set to [ 0 ], the output current is set to $\pm 55 \mu \mathrm{~A}$; when it is set to [1] , it is $\pm 250 \mu \mathrm{~A}$.

Bit 3 (T2), bit 4 (T1), and bit 5 (T0) are used to set the phase comparator reference signal output and counter divider output in test mode. (For details of test mode, see the test mode setting table.)

Bit 6 (Rsa) and bit 7 (Rsb) are used to set the crystal reference frequency divider ratio. (For details of the crystal reference frequency divider ratio, see the table for crystal reference frequency divider ratios.)

Bit 8 (OS) is used to set the charge-pump driver amplifier output setting. When bit 8 is set to [0], the output is ON (the normal setting used); when it is set to [1], the output is OFF (charge pump is sink mode).

## BYTE 5

Byte 5 is used to set the test mode and control the output ports (Band $1 \sim$ Band 4).
When an output port is set to [0], it is OFF; when it is set to [1], it is ON.
Bandswitch setting is also used to switch between the VHF and UHF bands.

- When the bandswitch data for either B1 or B2 is [1], VHF mode is effective.
- When the bandswitch data for both B1 and B2 is [0], UHF mode is effective.

Set the following maximum values for currents to the bandswitch driver. Ensure also that the total band current is within 17 mA when two bands are operating at the same time.

- Band 1 (pin 4) output current: 7 mA (maximum)
- Band 2 (pin 5) output current: 10 mA (maximum)
- Band 3 (pin 6) output current: 3 mA (maximum)
- Band 4 (pin 7) output current: 7 mA (maximum)


## B) READ MODE (Status Request)

When Read Mode is set, power-on reset operation status and phase comparator lock detector output status are output to the master device.

Bit 1 (POR) indicates the power-on reset operation status. When the power supply of Vcc stops, this bit is set to [1]. The conditions for reset to [0] are that voltage supplied to Vcc is 3 V or higher, that transmission is requested in READ MODE, and that the status is output. (When Vcc is turned on, bit 1 is also set to [1].)

Bit 2 (FL) indicates the phase comparator lock status. When this is locked, [1] is output; when it is unlocked, [0] is output.

DATA FORMAT
A) WRITE MODE

|  |  | MSB |  |  |  |  |  |  | LSB |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Address Byte | 1 | 1 | 0 | 0 | 0 | MA1 | MA0 | R/W = 0 | ACK |
| 2 | Divider Byte 1 | 0 | N14 | N13 | N12 | N11 | N10 | N9 | N8 | ACK |
| 3 | Divider Byte 2 | N7 | N6 | N5 | N4 | N3 | N2 | N1 | N0 | ACK (L) |
| 4 | Control Byte | 1 | CP | T2 | T1 | T0 | Rsa | Rsb | OS | ACK (L) |
| 5 | Band SW Byte | X | X | X | X | B4 | B3 | B2 | B1 | ACK (L) |

ACK :Acknowledged
(L) :Latch and transfer timing

## B) READ MODE

|  |  | MSB |  |  |  |  |  |  | LSB |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Address Byte | 1 | 1 | 0 | 0 | 0 | MA1 | MA0 | R/W=1 | ACK |
| 2 | Status Byte | POR | FL | 1 | 1 | 1 | 1 | 1 | 1 | - |

ACK :Acknowledged

## DATA SPECIFICATIONS

- MA1, MA0 : programmable hardware address bits

| MA1 | MA0 | ADDRESS PIN APPLIED VOLTAGE |
| :---: | :---: | :---: |
| 0 | 0 | 0 to 0.1 Vcc |
| 0 | 1 | OPEN or 0.2 Vcc to 0.3 Vcc |
| 1 | 0 | 0.4 Vcc to 0.6 Vcc |
| 1 | 1 | 0.9 Vcc to Vcc |

- N14 - N0 : programmable counter data
- CP : charge pump output current setting
[0] : $+55 \mu \mathrm{~A}$ (typ.)
[1] $: \pm 250 \mu \mathrm{~A}$ (typ.)
-T2, T1, T0 : test mode setting bits

| CHARACTERISTIC |  | T2 | T1 | T0 | NOTE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Normal operation |  | 0 | 0 | X |  |  |
| Charge-pump | OFF | 0 | 1 | X | Charge pump is OFF | (check output: NF) |
|  | SINK | 1 | 1 | 0 | Only charge pump sink current is ON | (check output: NF) |
|  | SOURCE | 1 | 1 | 1 | Only charge pump source current is ON | (check output: NF) |
| Reference signal output |  | 1 | 0 | 0 | Reference signal output | (check output: Band 4) |
| 1/2 counter divider output |  | 1 | 0 | 1 | 1/2 counter output | (check output: Band 2) |

Note 6: Testing of the counter divider output requires the input of programmable counter data.

Rsa, Rsb: Reference frequency divider ratio select bit.

| Rsa | Rsb | DIVIDER RATIO | COMPARE <br> FREQUENCY | STEP FREQUENCY |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $1 / 256$ | 15.265 kHz | 62.5 kHz |
| 0 | 1 | $1 / 512$ | 7.8125 kHz | 31.25 kHz |
| $X$ | 1 | $1 / 320$ | 12.5 kHz | 50 kHz |

OOS: tuning amplifier control bit
[0] : tuning amplifier ON (normal operation)
[1] : tuning amplifier OFF (charge pump is sink mode)
-B4, B3, B2, B1: Band output port control and band change control bit
[0] : band output driver ON
[1] : band output driver OFF

| Band | B4 | B3 | B2 | B1 |
| :---: | :---: | :---: | :---: | :---: |
| VHF Band | X | X | 0 | 1 |
| VHF Band | X | X | 1 | 0 |
| UHF Band | X | X | 0 | 0 |

When the bandswitch data is [1] for either B1 or B2, VHF mode is effective. When the bandswitch data is [0] for both B1 and B2, UHF mode is effective.
-POR: power-on reset flag
[0] : normal operation
[1] : reset operation
OFL: lock detect flag
[0] : unlocked
[1] : locked

OX: don't care

## -EXAMPLE OF BUS DATA TRANSMITTER-

## S: Start

ADR: Address Byte
DIV1: Divider Byte 1 (frequency data)
DIV2: Divider Byte 2 (frequency data)
CONT: Control Byte
BAND: Bandswitch Byte
A: Acknowledge
P: Stop
[1] Transmitter - 1

| S | ADR | A | DIV1 | A | DIV2 | A | CONT | A | BAND | A | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |

[2] Transmitter - 2

| S | ADR | A | CONT | A | BAND | A | DIV1 | A | DIV2 | A | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[3] Transmitter - 3 (This can be applied if control data and bandswitch data have already been programmed.)

| S | ADR | A | DIV1 | A | DIV2 | A | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[4] Transmitter -4 (This can be applied if frequency data have already been programmed.)

| S | ADR | A | CONT | A | BAND | A | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[5] Transmitter - 5 (This can be applied if frequency counter data and bandswitch data have already been programmed.)


TEST CIRCUIT 1

*X'tal: 4MHz (NDK:AT-51)

## TEST CIRCUIT 2



Measurement bus data setting

- Charge pump: High [250 $\mu \mathrm{A}$ (typ.)]
- Frequency step: 62.5 kHz

TEST CIRCUIT 3


Figure 2: Noise Figure measurement

## TEST CIRCUIT 4



Figure 3: CM / IM3 / 6-ch beat measurement
$I^{2} \mathrm{C}$ BUS CONTROL SUMMARY

## Data transmission format


(1) Start/stop conditions

(2) Bit transfer

Serial data

(3) Acknowledge

(4) Slave address

| A6 | A5 | A4 | A3 | A2 | A1 | A0 | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 0 | $*$ | $*$ | 0 |

## PACKAGE DIMENSIONS



Weight: 0.09 g (typ.)

## HANDLING PRECAUTIONS

1. The device should not be inserted into or removed from the test apparatus while the voltage is being applied; otherwise breakdown or deterioration in performance of the device may result.

Also, avoid any abrupt increasing or decreasing of the voltage.
Overshoot or chattering of the power supply may cause the IC to be degraded.
To avoid this problem, equip the power supply line with filters.
2. The peripheral circuits described in this datasheet are given only as system examples for evaluating the performance of the device. Toshiba neither recommend the configuration or related values of the peripheral circuits nor intend to manufacture such application systems in large quantities.

Please note that the high-frequency characteristics of the device may vary depending on the external components, mounting method and other factors relating to the application design. Therefore it is the responsibility of users incorporating the device into their designs to evaluate the characteristics of application circuits.

Toshiba only guarantee the quality and characteristics of the device as described in this datasheet and do not assume any responsibility for the customer's application design.
3. In order better to understand the quality and reliability of Toshiba semiconductor products and to incorporate them into designs in an appropriate manner, please refer to the latest Semiconductor Reliability Handbook (Integrated Circuits) published by Toshiba Semiconductor Company.

The handbook can also be viewed online at " http://www.semicon.toshiba.co.jp/ "

## Solderability

Regarding solderability, the following conditions have been confirmed.
(1) Use of $\mathrm{Sn}-63 \mathrm{~Pb}$ solder bath

- Solder bath temperature $=230$ ( C degree C
-Dipping time $=5$ seconds
- The number Number of times = once
- Use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder bath
- Solder bath temperature $=245^{\circ} \mathrm{C}$
- Dipping time $=5$ seconds
- Number of times = once
- Use of R-type flux


## RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

