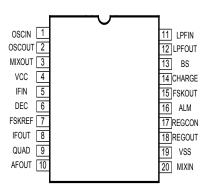

LOW POWER IF RECEIVER IC

DESCRIPTION


The UTC TA31142 is a low power IF receiver IC and is suitable for use as the second IF downconverter in double-conversion paging systems. It is well-suited for POCSAG paging applications and incorporates a 2-level FSK demodulator consisting of a quadrature FM demodulator, on-chip bit-rate filter, and 1-bit comparator. An on-chip 1V regulator is provided for convenient biasing of off-chip circuitry.

FEATURES

- *Extremely low power operation with power-down feature
- *Built-in crystal oscillator for mixer local oscillator
- *Mixer input frequency: 10-50 MHz
- *Quadrature detector
- *On-chip bit-rate filter
- *Audio output
- *1-bit comparator with open collector output
- *1V regulator
- *1.1V low battery alarm

PIN CONFIGURATIONS

UTC UNISONIC TECHNOLOGIES CO., LTD.

NUMBER	SYMBOL	DESCRIPTION	NUMBER	SYMBOL	DESCRIPTION
1	OSCIN	Oscillator input (base)	11	LPFIN	LPF operational amplifier input
2	OSCOUT	Oscillator output (emitter)	12	LPFOUT	LPF operational amplifier output
3	MIXOUT	Mixer output (2KΩ output	13	BS	Two-state logic input to control
		impedance)			receiver power up/down.
					(BS=high=normal operation;
					BS=low=stand-by mode)
4	VCC	Nominal 1.4V supply	14	CHARGE	Two-state logic input to control
					charge-discharge circuit.
					(CHARGE=high=fast charge;
					CHARGE=low=slow charge)
5	IFIN	IF amplifier input (2KΩ input	15	FSKOUT	Open collector NRZ comparator
		impedance)			output (requires pull-up resistor)
6	DEC	IF amplifier de-coupling capacitor	16	ALM	Open collector low battery alarm
		connection			output (requires pull-up resistor)
7	FSKREF	1-bit comparator reference input	17	BEGCON	1.0V regulator control output for
		(requires external capacitor)			connection to external PNP base
8	IFOUT	IF amplifier output	18	REGOUT	1.0V regulator input for
					connection to external PNP
					collector
9	QUAD	Quadrature FM demodulator input	19	VSS	Ground
10	AFOUT	Quadrature FM demodulator	20	MIXIN	Mixer input (5KΩ input
		output			impedance)

ABSOLUTE MAXIMUM RATINGS (Vss=0V)

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	Vcc	Vss-0.3 to Vss+3.5	V
Operating temperature range	Topr	-30 to 85	°C
Storage temperature range	Tstg	-55 to 150	°C
Soldering temperature range	TSLD	255	°C
Soldering time range	tsld	10	S

RECOMMENDED OPERATING CONDITIONS (Vss=0V)

PARAMETER	SYMBOL	VALUE			UNIT		
		Min.	Тур.	Max.			
Supply voltage range	Vcc	1.1	1.35	1.6	V		
MIXIN input frequency	fMIXIN			50	MHz		
Operating temperature	TA	-10	25	60	°C		

UTC UNISONIC TECHNOLOGIES CO., LTD.

 $ELECTRICAL\ CHARACTERISTIC \underline{S} (Ta=25\,^{\circ}C,\ Vcc=1.4V,Vss=0V,\ BS=high\ unless\ otherwise\ noted)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Quiescent current consumption	Icc,total			1.1	1.6	mA
Standby current consumption	Icc,modby	V _B S=0V			5	μА
Mixer conversion gain	Gc	Measured after 455 KHz ceramic filter	9	12.5	16	dB
Mixer output intermodulation intercept point	OIP3			-10		dBm
Mixer input resistance	Rin,MIX			5		kΩ
Mixer output resistance	Rout,MIX			2		kΩ
IF amplifier input resistance	Rin,IF			2		kΩ
S/N ratio I	SNI	-53 dBm at MIXIN		63		dB
S/N ratio 2	SN2	-53 dBm at IFIN		63		dB
S/N ratio 3	SN3	-91 dBm at IFIN		25		dB
Demodulation output level	VOD	-53 dBm at IF N		45		mVrms
AM rejection ratio	AMR	-53 dBm at IFIN AM=30%		50		dB
FSK output duty ratio	DR		40	50	60	%
Low battery alarm threshold voltage	VALM		1.05	1.1	1.15	V
Regulator output voltage	VREGOUT	430Ω load resistor	0.95	1.0	1.05	V
Charging / discharging current	Існ	VFSKREF=0V, VLPFOUT=0.18V	35	70	110	μА
ALM logic HIGH output current	IOH,ALM				2	μА
ALM logic LOW output voltage	IOL,ALM				0.4	V
FSKOUT logic HIGH output current	IOH.FSK.OUT				2	μА
FSKOUT logic LOW output vlotage	Vol,PSK, OUT				0.4	V

UTC UNISONIC TECHNOLOGIES CO., LTD. 3

FUNCTIONAL DESCRIPTION

The UTC TA31142 IF receiver IC incorporates a mixer, crystal-based local oscillator, IF amplifier, quadrature FM demodulator, bit-rate filter, and 1–bit comparator and is capable of demodulating 2-level FSK input signals. In addition, 1.0V regulator and 1.1V low battery alarm functions are provided.

POWER-DOWN FUNCTION

The entire receiver IC may be powered up and down through the control of the BS input (pin13). During power down operation, the quiescent current consumption of the IC drops to approximately 0μ A. The high input impedance of the BS pin allows for direct interfacing with the CMOS output of an off-chip micro controller.

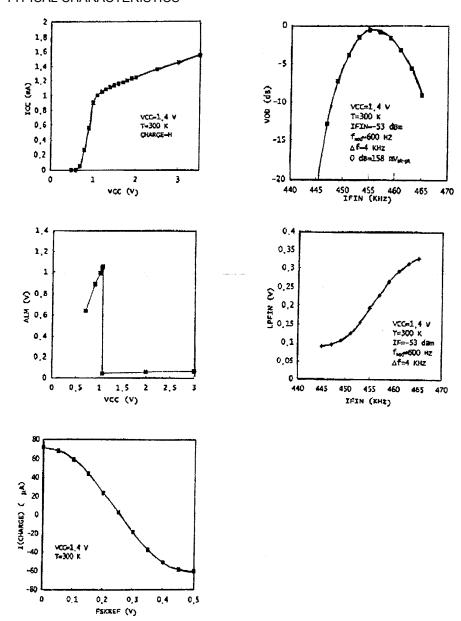
CHARGE / DISCHARGE CIRCUITRY

The function of the charge / discharge circuitry is for both fast and slow charging / discharging of the capacitor used for storing the voltage reference level of the FSKREF pin. The CHARGE input (pin14) should be enabled (CHARGE=high=fast charge) immediately after transition of the receiver IC from power-down to normal operation in order to reduce the charging / discharging time for coarse adjustment of the FSKREF voltage to the appropriate dc level (i.e. dc level of LPFOUT pin) and consequently to minimize the erroneous output of the 1-bit comparator. During actual data reception, the CHARGE pin should be set to low (CHARGE=low=slow charge) for fine adjustment of the FSKREF voltage.

1-bit COMPARATOR

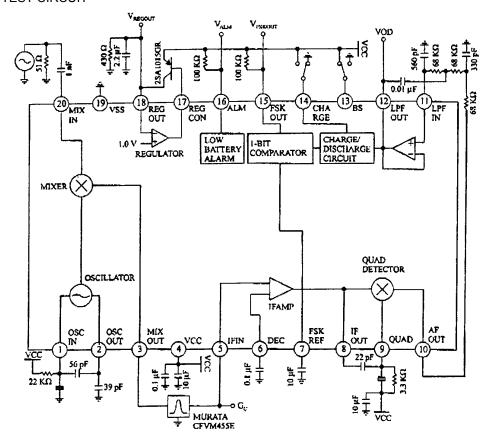
The integrated 1-bit comparator operates as a data slicer and "squares up" the bit-rate filtered output from the quadrature demodulator. The decision threshold voltage level for the 1-bit comparator is stored on an external capacitor connected to the FSKREF pin.

REGULATOR


The on-chip 1.0V regulator requires a suitable off-chip PNP transistor to achieve regulation. The external PNP transistor should have an hFE>200 for VcE>=0.1V.

LOW BATTERY ALARM

The low battery alarm output, ALM, is normally low, but rises to 1.1V (=VCC) when the VCC voltage falls below approximately 1.1V.


UTC UNISONIC TECHNOLOGIES CO., LTD. 4

TYPICAL CHARACTERISTICS

UTC UNISONIC TECHNOLOGIES CO., LTD. 5

TEST CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC UNISONIC TECHNOLOGIES CO., LTD. 6