100307 Low Power Quint Exclusive OR/NOR Gate

FAIRCHILD

SEMICONDUCTOR

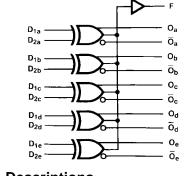
100307 Low Power Quint Exclusive OR/NOR Gate

General Description

The 100307 is monolithic quint exclusive-OR/NOR gate. The Function output is the wire-OR of all five exclusive-OR outputs. All inputs have 50 k Ω pull-down resistors.

Features

- Low Power Operation
- 2000V ESD protection
- Pin/function compatible with 100107
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range
 - (PLCC package only)

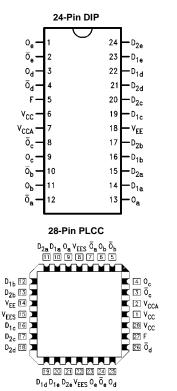

Ordering Code:

Order Number	Package Number	Package Description
1000307PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
1000307QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
1000307QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagrams



Pin Descriptions

Pin Names	Description
D _{na} –D _{ne}	Data Inputs
F	Function Output
O _a –O _e	Data Outputs
$\overline{O}_{a} - \overline{O}_{e}$	Complementary
	Data Outputs

Logic Equation

$$F = (D_{1a} \oplus D_{2a}) + (D_{1b} \oplus D_{2b}) + (D_{1c} \oplus D_{2c}) + (D_{1d} \oplus D_{2d}) + (D_{1e} \oplus D_{2e}).$$

© 2000 Fairchild Semiconductor Corporation DS010582

www.fairchildsemi.com

100307

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Maximum Junction Temperature (T _J)	+150°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current (DC Output HIGH)	–50 mA
ESD (Note 2)	≥2000V

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to +85°C
Industrial	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage (V _{EE})	-5.7V to -4.2V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. the parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

$V_{EE}=-4.2V$ to $-5.7V,\,V_{CC}=V_{CCA}=GND,\,T_{C}=0^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Units	Conditio	ons
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} =V _{IH (Max)}	Loading with
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V _{IL (Min)}	50 Ω to –2.0V
V _{OHC}	Output HIGH Voltage	-1035			mV	V _{IN} = V _{IH (Min)}	Loading with
V _{OLC}	Output LOW Voltage			-1610	mV	or V _{IL (Max)}	50Ω to $-2.0V$
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal	•
						for All Inputs	
VIL	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal	
						for All Inputs	
I _{IL}	Input LOW Current	0.50			μΑ	V _{IN} = V _{IL (Min)}	
IIH	Input HIGH Current						
	D _{2a} -D _{2e}			250	μΑ	$V_{IN} = V_{IH}$ (Max)	
	D _{1a} -D _{1e}			350			
I _{EE}	Power Supply Current	-69	-43	-30	mA	Inputs Open	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	0°C	T _C = -	+25°C	T _C = -	+85°C	Units	Conditions
	i arameter	Min	Max	Min	Max	Min	Max	Onita	Conditions
t _{PLH} t _{PHL}	Propagation Delay D_{2a} - D_{2e} to O, \overline{O}	0.55	1.90	0.55	1.80	0.55	1.90	ns	
t _{PLH} t _{PHL}	Propagation Delay D_{1a} - D_{1e} to O, \overline{O}	0.55	1.70	0.55	1.60	0.55	1.70	ns	Figures 1, 2
t _{PLH} t _{PHL}	Propagation Delay Data to F	1.15	2.75	1.15	2.75	1.15	3.00	ns	
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	

www.fairchildsemi.com

Commercial Version (Continued) **PLCC AC Electrical Characteristics**

$V_{EE} = -4.2V$ to -5.7V. $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	$\mathbf{T_C} = 0^{\circ}\mathbf{C}$		T _C = +25°C		T _C = +85°C		Conditions
		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH} t _{PHL}	Propagation Delay D_{2a} - D_{2e} to O, \overline{O}	0.55	1.70	0.55	1.60	0.55	1.70	ns	
t _{PLH} t _{PHL}	Propagation Delay D_{1a} - D_{1e} to O, \overline{O}	0.55	1.50	0.55	1.40	0.55	1.50	ns	Figures 1, 2
t _{PLH} t _{PHL}	Propagation Delay Data to F	1.15	2.55	1.15	2.55	1.15	2.80	ns	1190103 1, 2
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	

Industrial Version

PLCC DC Electrical Characteristics (Note 4)

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -40^{\circ}C$ to $+85^{\circ}C$

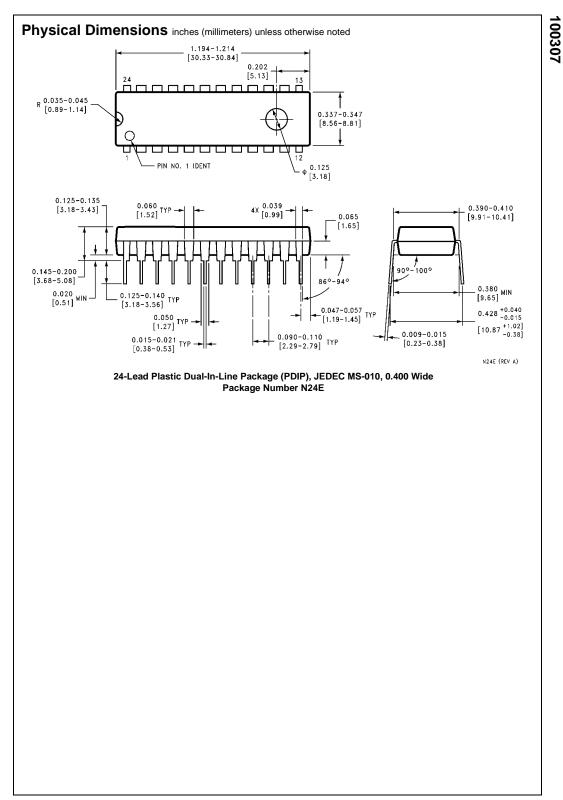
Symbol	Parameter	$T_C = -40^{\circ}C$		$T_C = 0^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Cymbol	i arameter	Min	Max	Min	Max	Units	Conditions	
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$V_{IN} = V_{IH(Max)}$	Loading with
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	or V _{IL(Min)}	50 Ω to –2.0V
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	$V_{IN} = V_{IH(Min)}$	Loading with
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	or V _{IL(Max)}	50Ω to $-2.0V$
VIH	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal	for All Inputs
V _{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal f	or All Inputs
I _{IL}	Input LOW Current	0.50		0.50		μΑ	$V_{IN} = V_{IL(Min)}$	
I _{IH}	Input HIGH Current							
	D _{2a} -D _{2e}		250		250	μΑ	$V_{IN} = V_{IH}(Max)$	
	D _{1a} -D _{1e}		350		350			
I _{EE}	Power Supply Current	-69	-30	-69	-30	mA	Inputs Open	

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are cho-sen to guarantee operation under "worst case" conditions.

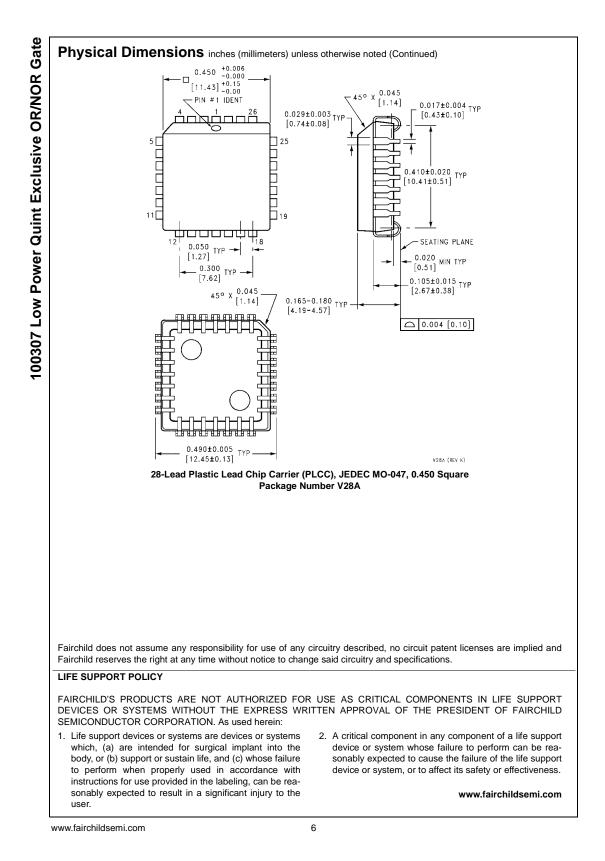

PLCC AC Electrical Characteristics

Symbol	Parameter	$T_C = -40^{\circ}C$		$T_C = +25^{\circ}C$		T _C = +85°C		Units	Conditions
	Farameter	Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay	0.45	4 70	0.55	1.00	0.55	4 70	-	
t _{PHL}	D_{2a} - D_{2e} to O, \overline{O}	0.45	1.70	0.55	1.60	0.55	1.70	ns	
t _{PLH}	Propagation Delay	0.45	1.50	0.55	1.40	0.55	1.50		
t _{PHL}	D_{1a} - D_{1e} to O, \overline{O}	0.45	0.45 1.50	0.55	1.40	0.55	1.50	ns	Figures 1. 2
t _{PLH}	Propagation Delay	1.05	2.55	1.15	2.55	1.15	2.80	20	Figures 1, 2
t _{PHL}	Data to F	1.05	2.55 1.15	1.15	1.15 2.55	1.15	2.80	ns	
t _{TLH}	Transition Time	0.25	1.10	0.25	1 10	0.25	1.10		1
t _{THL}	20% to 80%, 80% to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	

3


$r_{\rm F} = -4.2 V$ to $-5.7 V$,	$V_{CC} = V_{CCA} = GND$	

100307



www.fairchildsemi.com

4

5

