

SANYO Semiconductors DATA SHEET

LA6559 — For CD

Monolithic Linear IC

5-Channel Driver

(BTL: Four-Channel, H Bridge: One-Channel)

Overview

The LA6559 is a 5-channel driver (BTL: 4-channel, H bridge: 1-channel) for CD players.

Functions

- Power amplifier 5-channel built-in. (Bridge-connection (BTL): 4-channel, H bridge: 1-channel)
- IO max 1A
- Level shift circuit built-in (except H bridge).
- Mute circuit (output ON/OFF) built-in.

(Operable with BTL AMP with MUTE1: CH1 and MUTE2: CH2 to 4 and not operable for the H bridge of 3.3VREG)

- 3.3V regulator built-in (external PNP transistor).
- With a function to set the loading output voltage
- Overheat protection circuit (thermal shutdown) built-in.

Specifications

Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} max		14	٧
Allowable power dissipation	Pd max	Independent IC	0.8	W
		Mounted on a standard board. *	2	W
Maximum output current	I _O max	Each output for H bridge, channel 1 to 4.	1	Α
Maximum input voltage	V _{IN} B		13	V
MUTE pin voltage	VMUTE		13	V
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

^{*} Standard board size: 76.1×114.3×1.6mm³, glass epoxy.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage V _{CC}		Same for V _{CC} -VREG	5.6 to 13	V

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

SANYO Semiconductor Co., Ltd.

TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

LA6559

Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC}1 = V_{CC}2 = 8V$, VREF = 1.65V, unless especially specified.

Doromotor	Symbol	Conditions	Ratings			Lloit
Parameter	Symbol	Conditions	min	typ	max	Unit
ALL Blocks						
No-load current drain ON	I _{CC} -ON	BTL-AMP output ON, LOADING block OFF *1		30	50	mA
No-load current drain OFF	I _{CC} -OFF	All outputs OFF *1		10	20	mA
VREF input voltage range	VREF-IN		1		V _{CC} -1.5	V
Thermal shutdown temperature	TSD	*2	150	175	200	°C
BTL AMP Block (CH1 to CH4)	•					
Output offset voltage	VOFF	Voltage difference between outputs for BTL AMP, each channel. *3	-60		60	mV
Input voltage range	V _{IN}	Input voltage range for input for OP-AMP.	0		V _{CC} -1.5	mA
Output voltage	V _O	Each voltage between V_0 + and V_0 - when $R_L = 8\Omega$. *4	5.7	6.5		٧
Closed-circuit voltage gain	VG	Input and output gain. *3	5.4	6	6.6	Times
Slew rate	SR	AMP Independent Multiply 2 between outputs. *2		0.5		V/µs
MUTE ON voltage	VMUTE-ON	Each MUTE *5	2			V
MUTE OFF voltage	VMUTE-OFF	Each MUTE *5			0.5	V
Input AMP Block (CH1 to 4)						
Input voltage range	V _{IN} -OP		0		V _{CC} -1.5	V
Output current (SINK)	SINK-OP		2			mA
Output current (SOURCE)	SOURCE-OP	*6	300	500		μΑ
Output offset voltage	V _{OFF} -OP		-10		10	mV
Loading Block (CH5, H bridge)						
Output voltage	V _O -LOAD	Forward, reverse, $R_L = 8\Omega$, VCONT=8V *4	5.7	6.5		V
Break output saturation voltage	V _{CE} -BREAK	Output voltage at braking *7			0.3	V
Input low level	V _{IN} -L				1	V
Input high level	V _{IN} -H		2			V
Output set voltage	VCONT	I _O = 200mA (Between outputs), VCONT = 3V	2.9	3.15	3.4	V
Power Supply Block (PNP transi	stor : 2SB632K-use)					
3.3V supply voltage	VOUT	I _O = 200mA	3.15	3.3	3.45	V
REG-IN SINK current	REG-IN-SINK	Base current of external PNP *8		10		mA
Line regulation	ΔV _O LN	6V ≤ V _{CC} ≤ 12V		20	150	mV
Load regulation	ΔV _O LD	5mA ≤ I _O ≤ 200mA		50	200	mV

Note $\,\,^{\star}1$: Current dissipation that is a sum of VCC1 and VCC2 and S-VCC at no load.

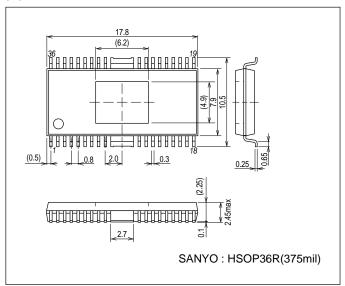
^{*2 :} Design guarantee value

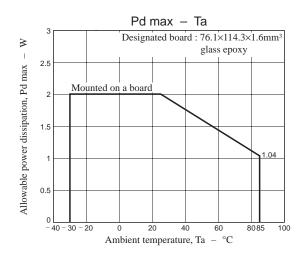
^{*3 :} Input AMP is a BUFFER AMP.

^{*4 :} Voltage difference between both ends of load (8 Ω). Output saturated.

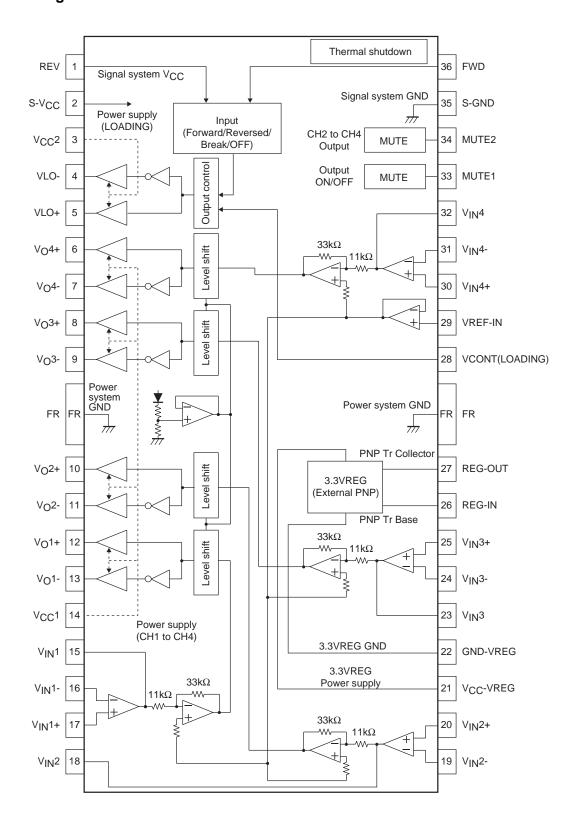
 $^{^{\}star}5$: Output ON with MUTE : [H] and OFF with MUTE : [L] (HI impedance).

^{*6 :} The source of input OP-AMP is a constant current. As the 11kΩ resistance to the next stage is a load, pay due attention when setting the input OP-AMP gain.


 $[\]ensuremath{^{\star}7}$: Short (GND) brake used. SINK side output ON.


 $^{^{\}star}8$: 3.3VREG incorporates a drooping protection circuit and operated when the base current is 10mA (TYP).

Package Dimensions


unit: mm (typ)

3251

Block Diagram

LA6559

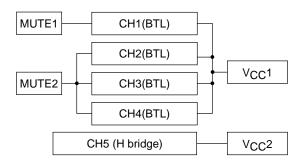
Pin Functions

Pin No.	Symbol	Pin descriptions		
1	REV	5CH (VLO) Output change pin (REV), logic input for loading block.		
2	S-V _{CC}	Signal system power supply (BTL-AMP : CH1 to 4)		
3	V _{CC} 2	Power supply for loading block		
4	VLO-	Loading output (-)		
5	VLO+	Loading output (+)		
6	V _O 4+	Output pin (+) for channel 4		
7	V _O 4-	Output pin (-) for channel 4		
8	V _O 3+	Output pin (+) for channel 3		
9	V _O 3-	Output pin (-) for channel 3		
10	V _O 2+	Output pin (+) for channel 2		
11	V _O 2-	Output pin (-) for channel 2		
12	V _O 1+	Output pin (+) for channel 1		
13	V _O 1-	Output pin (-) for channel 1		
14	V _{CC} 1	CH1 to CH4 (BTL-AMP) output stage power supply		
15	V _{IN} 1	Input pin for channel 1		
16	V _{IN} 1-	OP-AMP input AMP-A input pin (-)		
17	V _{IN} 1+	OP-AMP input AMP-A input pin (+)		
18	V _{IN} 2	Input pin for channel 2, input AMP output		
19	V _{IN} 2-	Input pin (-) for channel 2		
20	V _{IN} 2+	Input pin (+) for channel 2		
21	V _{CC} -VREG	3.3VREG power supply		
22	GND-VREG	3.3VREG GND		
23	V _{IN} 3	Input pin for channel 3, input AMP output		
24	V _{IN} 3-	Input pin (-) for channel 3		
25	V _{IN} 3+	Input pin (+) for channel 3		
26	REG-IN	PNP transistor base connected		
27	REG-OUT	3.3V power output to which the PNP transistor collector connected.		
28	VCONT (LOADING)	Output voltage set pin for loading block		
29	VREF-IN	Reference voltage applied pin		
30	V _{IN} 4+	Input pin (+) for channel 4		
31	V _{IN} 4-	Input pin (-) for channel 4		
32	V _{IN} 4	Input pin for channel 4, input AMP output		
33	MUTE1	Output ON/OFF, channel 1 (BTL AMP)		
34	MUTE2	Output ON/OFF, channel 2 to 4 (BTL AMP)		
35	S-GND	Signal system GND		
36	FWD	Output change pin (FWD) for loading output (VLO+ -), logic input for loading block.		

Note 1 : Center frame (FR) becomes GND for the power system (P-GND). Set this to the minimum potential together with S-GND.

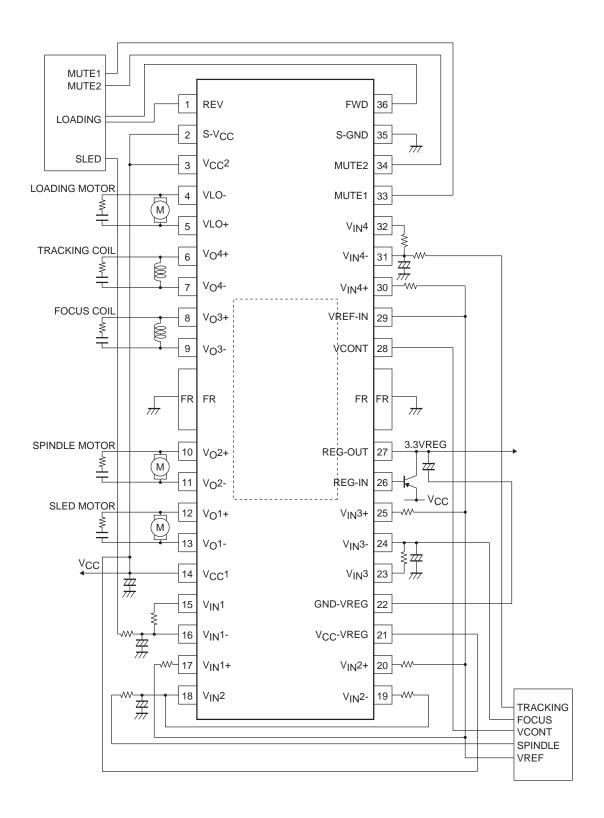
Note 2 : Short-circuit each of VCC1, VCC2, VCC-VREG, and S-VCC power pins externally.

Pin Description


Pin No.	Symbol	Pin function	Description	Equivalent circuit
17 16 15 20 19 18 25 24 23 30 31 32	VIN1+ VIN1- VIN2+ VIN2- VIN2- VIN3+ VIN3- VIN3- VIN4+ VIN4- VIN4- VIN4	Input (CH1 to 4)	Input pin (CH1 to 4)	VCC VIN*- VIN*+ S-GND
36	FWD REV	Input (LOADING)	Logic input pin. By combining H and L of this pin, any one of four modes (forward/ reversed/brake/idling) can be selected.	FWD
12 13 10 11 8 9 6 7	V _O 1+ V _O 1- V _O 2+ V _O 2- V _O 3+ V _O 3- V _O 4+ V _O 4-	Output (CH1 to 4)	Output for channel 1 to 4.	Vcc1 Vo*
33 34	MUTE1 MUTE2	MUTE	BTL AMP output. Output ON/OFF for CH1 to CH4. MUTE: H Output OFF MUTE: L Output OFF	S-VCC MUTE 100kΩ S-GND S-GND
5 4 28	VLO- VLO+ VCONT	Output (LOADING)	Output voltage set pin for loading block	V _O 5+ V _O 5- VCONT

Truth Table (loading (H bridge) section)

FWD	REV	Loading output
L	L	OFF *1
	Н	Forward
Н	L	Reversed
	Н	(Short) brake *2


^{*1} The output has a high impedance.

Relation of MUTE and Power (VCC*)

^{*2} At brake, the SINK side transistor is ON (short brake). VLO+ and VLO- are approximately on the GND level.

Sample Application Circuit

Note : Add CR between outputs or to a circuit to GND when oscillation occurs in the output (Example : $R=2.2\Omega$, $C=0.1\mu F$). Apply 4.5V or more to the external PNPTr emitter pin.

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 2007. Specifications and information herein are subject to change without notice.