CD-ROM Drive Three-Channel Bridge (BTL) Driver

Overview

The LA6529M is a three-channel bridge (BTL) driver for CD-ROM drives.

Functions and Features

- Three bridge-tied load (BTL) power amplifier channels
- I_{O} max: 1 A
- Muting circuit
- Thermal shutdown circuit

Package Dimension

unit: mm
3073A-MFP30SLF

SANYO: MFP30SLF

Specifications

Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	$\mathrm{V}_{\text {CC }}$ max		14	V
	$\mathrm{V}_{\text {S }}$ max	Maximum rating for $\mathrm{V}_{\mathrm{S}} 1$ and $\mathrm{V}_{\mathrm{S}} 2$	14	V
Maximum input voltage	$\mathrm{V}_{\text {IN }}$	For the $\mathrm{V}_{\mathbb{I N}} 1$ through $\mathrm{V}_{\text {IN }} 3$ input pins	13	V
Mute pin voltage	$\mathrm{V}_{\text {Mute }}$		13	V
Allowable power dissipation	Pd max		0.9	W
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

Operating Conditions at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Operating voltage 1	V_{CC}		4 to 13	V
Operating voltage 2-1	$\mathrm{V}_{\mathrm{S}} 1$	The operating voltage for CH-U	4 to 13	V
Operating voltage 2-2	$\mathrm{V}_{\mathrm{S} 2}$	The operating voltage for CH-V and CH-W	4 to 13	V

Note: $\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{S}} 1, \mathrm{~V}_{\mathrm{S}} 2$

Electrical Characteristics at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathbf{1 2} \mathrm{V}, \mathrm{V}_{\mathrm{S}} \mathbf{1}=\mathrm{V}_{\mathrm{S}} \mathbf{2}=\mathbf{5} \mathrm{V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
$\mathrm{V}_{\text {CC }}$ no-load input current drain	$I_{\text {cc }} 1$	All outputs on (Mute 1, 2: high *)	4	8	15	mA
	Icc^{2}	All outputs off (Mute 1, 2: low)	-	4	10	mA
$\mathrm{V}_{\mathrm{S}} 1$ no-load current drain	$\mathrm{I}_{\text {S }} 1-1$	CH-U: on (Mute 1: high *)	-	5	10	mA
	IS $1-2$	CH-U: off (Mute 1: low)	-	-	2	mA
V 2 2 no-load current drain	Is 2 -1	CH-V, CH-W: on (Mute 2: high *)	-	10	20	mA
	Is2-2	$\mathrm{CH}-\mathrm{V}, \mathrm{CH}-\mathrm{W}$: off (Mute 2: low)	-	-	4	mA
Output offset voltage	$\mathrm{V}_{\text {OF }} 1$ to $\mathrm{V}_{\text {OF }} 3$	The potential difference between the + and - sides for CH-U through CH-W	-50	-	+50	mV
Input voltage range	$\mathrm{V}_{\text {IN }}$	The voltage range for $\mathrm{V}_{\mathbb{1} 1} 1$ through $\mathrm{V}_{\mathbb{I N}} 3$.	0.5	-	5	V
Buffer amplifier 1 output voltage	$\mathrm{V}_{\text {BUFFER }} 1$	The voltage difference with respect to $1 / 2 \mathrm{~V}_{S} 1$	-50	0	+50	mV
Buffer amplifier 2 output voltage	$\mathrm{V}_{\text {BUFFER }}{ }^{2}$	The voltage difference with respect to $1 / 2 \mathrm{~V}_{\mathrm{S}} 2$	-50	0	+50	mV
Output voltage (source)	$\mathrm{V}_{\mathrm{O}} 1$	Output high, $\mathrm{I}_{\mathrm{O}}=700 \mathrm{~mA}$, for + outputs	4.4	4.7	-	V
Output voltage (sink)	$\mathrm{V}_{\mathrm{O}} 2$	Output low, $\mathrm{I}_{\mathrm{O}}=700 \mathrm{~mA}$, for + outputs	-	0.3	0.6	V
Closed loop voltage gain	VG	Bridge amplifier	-	6	-	dB
Slew rate	SR		-	0.15	-	V/ $\mu \mathrm{s}$
Mute on voltage	$\mathrm{V}_{\text {mute }} 1,2$	The voltage applied to MUTE1 or MUTE2 when the output goes on.	-	1.5	2	V
Mute on current	$I_{\text {mute }} 1,2$	The MUTE1 or MUTE2 influx current when the output goes on.	-	6	10	$\mu \mathrm{A}$

Note: * $\mathrm{CH}-\mathrm{U}$ will be on when MUTE1 is high. $\mathrm{CH}-\mathrm{V}$ and $\mathrm{CH}-\mathrm{W}$ will be on when MUTE2 is high.

Block Diagram

Pin Functions

Pin No.	Pin	Function	Equivalent circuit
$\begin{gathered} \hline 1,2, \\ 14,15, \\ 16,17, \\ 29,30 \end{gathered}$	RF	Substrate (minimum potential)	
3	GND	Ground	
$\begin{gathered} 4 \\ 5 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{V}_{I N} 1 \\ \mathrm{~V}_{I N} 1 \mathrm{~A} \\ \mathrm{~V}_{I N} 2 \\ \mathrm{~V}_{\mathrm{IN} 2} 2 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{IN}} 3 \\ \mathrm{~V}_{\mathrm{IN}} 3 \mathrm{~A} \end{gathered}$	$\mathrm{CH}-\mathrm{U}$ input $\mathrm{CH}-\mathrm{U}$ input (for gain adjustment) $\mathrm{CH}-\mathrm{V}$ input $\mathrm{CH}-\mathrm{V}$ input (for gain adjustment) CH-W input CH-W input (for gain adjustment)	
6	MUTE1	Sets the CH-U output on or off.	
11	BUFFER OUT1	Buffer amplifier 1 output (1/2 VS1: typical). Used as the reference voltage for the $\mathrm{CH}-\mathrm{U}$ output stage.	
12	BUFFER OUT2	Buffer amplifier 2 output (1/2 VS1: typical). Used as the reference voltage for the $\mathrm{CH}-\mathrm{V}$ and $\mathrm{CH}-\mathrm{W}$ output stages.	
13	V_{CC}	Power supply	
18	NC	Must be left open.	
19	MUTE2	Sets the CH-V and CH-W outputs on or off.	
20	$\mathrm{V}_{\mathrm{S}} 2$	$\mathrm{CH}-\mathrm{V}$ and $\mathrm{CH}-\mathrm{W}$ output stage power supply	
$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \end{aligned}$	$\mathrm{W}_{\text {OUT }}{ }^{-}$ $\mathrm{W}_{\text {OUT }}+$ $V_{\text {OUT }}{ }^{-}$ $V_{\text {OUT }}{ }^{+}$ UOUT $^{-}$ $\mathrm{U}_{\text {OUT }}{ }^{+}$	CH-W inverted output CH-W noninverted output $\mathrm{CH}-\mathrm{V}$ inverted output $\mathrm{CH}-\mathrm{V}$ noninverted output $\mathrm{CH}-U$ inverted output $\mathrm{CH}-\mathrm{U}$ noninverted output	
27	$\mathrm{V}_{\mathrm{S}} 1$	$\mathrm{CH}-\mathrm{U}$ output stage power supply	
28	$\mathrm{V}_{\text {REF }}$	Level shifter circuit reference voltage (common to all three channels)	

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

■ Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 1997. Specifications and information herein are subject to change without notice.

