

SANYO Semiconductors DATA SHEET

Monolithic Linear IC LA6567H — For MD and CD Player **Five-Channel Motor Driver** (four BTL channels plus one H bridge channel)

Overview

The LA6567H is a motor driver IC for MD and CD players with four BTL channels and one H bridge channel. The LA6567H features a separate power supply for the H bridge block, an output adjustment pin, and a 5V regulator to support a wide range of applications.

Functions

- Power amplifier 4-channel (BTL) and 1-channel (H bridge) built-in.
- IO max 700mA (Each channel)
- Level shift circuit built-in (BTL AMP).
- Overheat protection circuit (thermal shutdown) built-in.
- With loading output voltage setting function
- 5V regulator built-in.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions Ratings		Unit
Supply voltage	V _{CC} max		14	V
Allowable power dissipation	Pd max	Mounted on a specified board*	2.0	W
Maximum output current	I _O max	Each output for channel 1 to 5.	0.7	А
Maximum input voltage	V _{IN} B		13	V
MUTE pin voltage	VMUTE		13	V
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

* Mounted on a specified board : 76.1×114.3×1.6mm³, glass epoxy board.

Recommended Operating Conditions at Ta = 25°C

Ī	Parameter	Symbol	Conditions	Ratings	Unit
	Supply voltage	V _{CC}		5.6 to 13	V

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

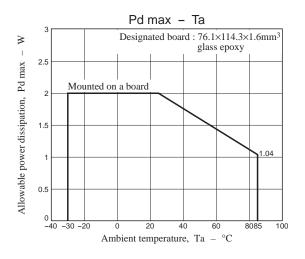
SANYO Semiconductor Co., Ltd. TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

LA6567H

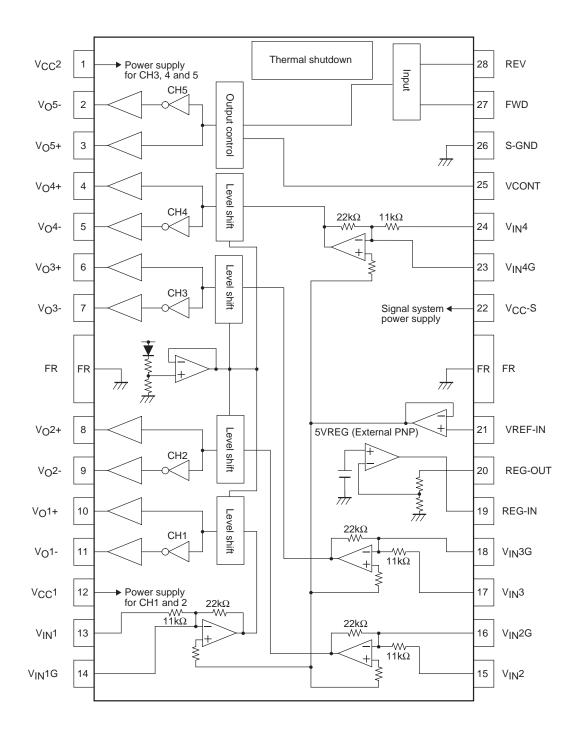
Parameter	Cumhal	Conditions	Ratings			1134	
Parameter	Symbol	Conditions	min	typ	max	Unit	
[Overall Characteristics]							
No-load current drain ON	ICC	All outputs ON, FWD = REV = 0V *1		30	50	mA	
VREF input voltage range	VREF-IN		1		V _{CC} -1	V	
[BTL Amplifier Block]							
Output offset voltage	VOFF	Voltage difference between outputs for BTL AMP, each channel.	-50		50	mV	
Input voltage range	VIN	Input voltage range	0		V _{CC}	V	
Output voltage	VO	Each voltage between V_0+ and V_0- when R_L = 8 Ω . *2	4	5		V	
Closed-circuit voltage gain	VG	Input and output gain.	3.7	4	4.3	deg	
Slew rate	SR	AMP Independent Multiply 2 between outputs. *3		0.5		V/µs	
[H Bridge Block]	·	· ·					
Output voltage	V _O -LOAD	VCONT = 8V *2	5.45	6		V	
Input low level	V _{IN} -L				1	V	
Input high level	V _{IN} -H		2			V	
Output setting voltage VCONT		VCONT = 8V *2	3.0	3.5	4.0	V	
[Regulator Block] (PNP transistor :	: 2SB632K-use)						
Output voltage	Vreg	I _L = 100mA	4.75	5	5.25	V	
Output load fluctuation	ΔVRL	I _L = 0 to 200mA	-50	0	10	mV	
Supply voltage fluctuation	ΔVV _{CC}	V _{CC} = 6 to 12V, I _L = 100mA	-15	21	60	mV	

Electrical Characteristics at Ta = 25° C, V_{CC} = V_{CC} = 8V, VREF = 1.65V, unless especially specified


Note $~~^{\star}1$: Current dissipation that is a sum of V_{CC}1 and V_{CC}2 at no load.


*2 : Voltage difference between both ends of load (8 $\Omega).$ Output saturated.

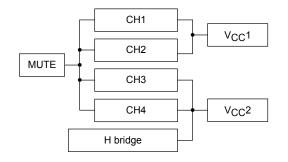
*3 : Design guarantee value


Package Dimensions

unit : mm (typ) 3234B

Block Diagram

Pin Functions


Pin No.	Symbol	Pin descriptions			
1	V _{CC} 2	CH3, 4, and 5 power supplies (Used while being short-circuited to V_{CC}1 and V_{CC}-S)			
2	V _O 5-	Loading output (-)			
3	V _O 5+	Loading output (+)			
4	V _O 4+	Output pin (+) for channel 4			
5	V _O 4-	Output pin (-) for channel 4			
6	V _O 3+	Output pin (+) for channel 3			
7	V _O 3-	Output pin (-) for channel 3			
8	V _O 2+	Output pin (+) for channel 2			
9	V _O 2-	Output pin (-) for channel 2			
10	V _O 1+	Output pin (+) for channel 1			
11	V ₀ 1-	Output pin (-) for channel 1			
12	V _{CC} 1	CH1 and 2(BTL) power supplies (Used while being short-circuited to $V_{\mbox{CC}}\mbox{-S}$ and $V_{\mbox{CC}}\mbox{2})$			
13	V _{IN} 1	Input pin for channel 1			
14	V _{IN} 1G	Input pin for channel 1 (for gain adjustment)			
15	V _{IN} 2	Input pin for channel			
16	V _{IN} 2G	Input pin for channel 2 (for gain adjustment)			
17	V _{IN} 3	Input pin for channel 3			
18	V _{IN} 3G	Input pin for channel 3 (for gain adjustment)			
19	REG-IN	Regulator pin (external PNP base)			
20	REG-OUT	Regulator pin (external PNP collector)			
21	VREF-IN	Reference voltage input pin			
22	V _{CC} -S	Signal system supply (Used while being short-circuited to V_CC1 and V_CC2)			
23	V _{IN} 4G	Input pin for channel 4 (for gain adjustment)			
24	V _{IN} 4	Input pin for channel 4			
25	VCONT	5CH (VLO) output voltage setting pin			
26	S-GND	Signal system GND			
27	FWD	5CH(VLO) Output change pin (FWD), logic input for loading block.			
28	REV	5CH(VLO) Output change pin (REV), logic input for loading block.			

Note : • Center frame (FR) becomes GND for the power system (P-GND). Set this to the minimum potential together with S-GND.

 \bullet Short-circuit power system pins, V_CC-S, V_CC1, and V_CC2 externally for use.

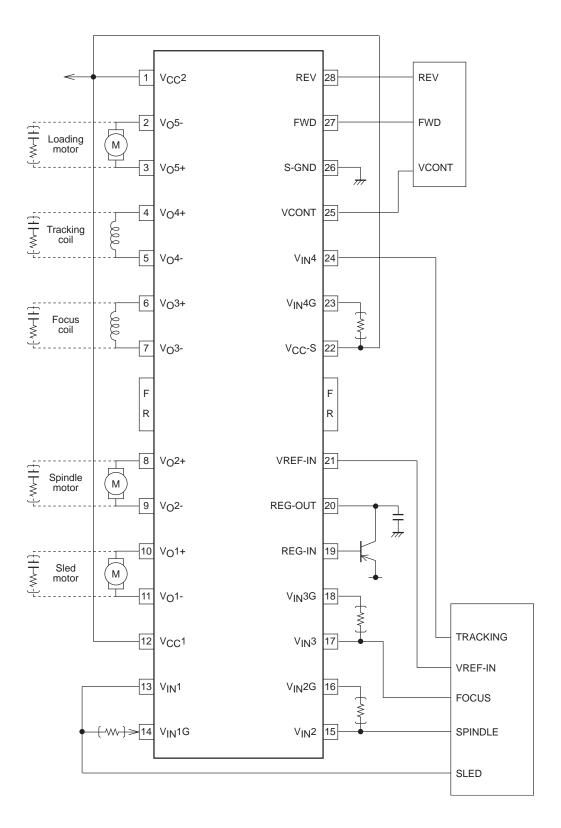
	cription	Γ	ſ	1
Pin No.	Symbol	Pin function	Description	Equivalent circuit
13 14 15 16 17 18 23 24	VIN V _{IN} G	Input	Each input pin	VIN O VING O Vref O Vref O
4 5 7 8 9 10 11	vo	Output	Each output	OUT
2 3 25	V _O 5+ V _O 5- VCONT	V _O 5 Output set for loading block	H bridge output Output setting voltage pin	V ₀ 5+ V ₀ 5- VCONT
27 28	FWD	FWD	H brideg input	O FWD

Relation of MUTE and Power (V_{CC}*)

 * Connect V_CC1 and V_CC2 externally.

H bridge block

FWD	REV	V _O 5+	V _O 5-	Mode
L	L	OFF	OFF	Open *1
L	Н	Н	L	Forward
н	L	L	н	Reversed
н	н	L	L	Break *2


Note *1 : The output has a high Impedance.

 $^{\ast}2$: At brake, the SINK side transistor is ON (short brake).

VLO+ and VLO- are approximately on the GND level.

*3 : VCONT (output setting voltage pin) and VLO can be related as VLO = VCONT-1V (typ).

Sample Application Circuit

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 2006. Specifications and information herein are subject to change without notice.