

SANYO Semiconductors **DATA SHEET**

LA6570 — Monolithic Linear IC

5CH Driver (BTL: 4CH, H-Bridge: 1CH) for CD

Overview

The LA6570 is a 5CH driver (BTL: 4CH, H-bridge: 1CH) for CD players.

Features

- Built-in POWER AMP 5CH (bridge connection (BTL): 4CH, H-bridge: 1CH)
- IO max 1A
- Built-in level shift circuit (Except H-bridge.)
- Built-in MUTE circuit (output ON/OFF). (Operates only for CH1 to CH4 BTL AMP. No operation for H-bridge and 5VREG.)
- Built-in 5V regulator (with external PNP transistor)
- Implements VREF switching function (Select H for external, or L for internal (2.5 V))
- Built-in overheat protection circuit (Thermal shutdown)

Specifications

Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V _{CC} max		14	V
	Dilmon	Independent IC	0.8	14/
Allowable operation	Pd max	Specific board *	2.0	W
Maximum output current	I _O max	Each output of CH1 to CH4 and H-bridge	1	Α
Maximum input voltage	VINB		13	V
MUTE pin voltage	VMUTE		13	V
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

^{*} Specific board size: 76.1 mm × 114.3 mm × 1.6 mm, board material: glass epoxy resin.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	Vcc		5.6 to 13	V

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

SANYO Semiconductor Co., Ltd.

TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

LA6570

Electrical Characteristics at Ta = 25 °C, $V_{CC}1 = V_{CC}2 = 8V$, VREF = 2.5V unless otherwise specified

			Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit
[Whole]			111111	typ	max	
No-load current consumption ON	I _{CC} -ON	BLT AMP output ON, LODING block OFF *1		30	50	mA
No-load current consumption OFF	I _{CC} -OFF	All output OFF *1		10	15	mA
Thermal shutdown operating temperature	TSD	Design guaranteed performance	150	175	200	°C
[VREF-AMP]	I				I	
VREF-AMP offset voltage	VREF-OFFSET		-10		10	mV
VREF input voltage range	VREF-IN		1		V _{CC} -1.5	V
VREF-OUT output current	I-VREF-OUT	CH1 input reference voltage	2	5	- 00	mA
[BTL AMP block] (CH1 to CH4)	1		Ц		I.	
Output offset voltage	VOFF	Voltage differences between BTL AMP and each channel output. *2	-50		50	mV
Input voltage range	VIN	Input voltage range of input OP-AMP	0		V _{CC} -1.5	V
Output voltage	v _o	For R _L = 8Ω , between each V _O + and V _O - *3	5.7	6.2		V
Closed circuit voltage gain	VG	Gain between input and output, input OP-AMP:BUFFER	3.6	4	4.4	times
Slew rate	SR	For output by AMP alone, it must be doubled		0.5		V/μs
MUTE ON voltage	VMUTE-ON	Output ON voltage, each MUTE *4	2			V
MUTE OFF voltage	VMUTE-OFF	Output OFF voltage, each MUTE *4			0.5	V
[Input AMP block] (CH1 to CH4)						
Input voltage range	V _{IN} -OP		0		V _{CC} -1.5	V
Output current (SINK)	SINK-OP		2			mA
Output current (SOURCE)	SOURCE-OP	*5	300	500		μΑ
Output offset voltage	VOFF-OP		-10		10	mV
CH1 input switching voltage 1	VSW-OP1	CH1 input AMP (B), external VREF selected *6	2			V
CH1 input switching voltage 2	VSW-OP2	CH1 input AMP (A), Internal VREF selected *6			0.5	V
[Loading block] (CH5, H-bridge)						
Output voltage	V _O -LOAD	Between outputs for Normal/Reverse rotation, $R_L = 8\Omega \label{eq:RL}$	5.7	6.5		٧
Brake output saturation voltage	VCE-BREAK	For brake, output voltage *8			0.3	V
Input "L" level	V _{IN} -L				1	V
Input "H" level	V _{IN} -H		2			V
[Power supply block] (with external PI	NP transistor : 2SB63	32K is used)				
5V power supply output	Vout	I _O =200mA	4.8	5.0	5.2	V
REG-IN SINK current	REG-IN-SINK	Base current of external PNP transistor *9	5	10		mA
Line regulation	ΔVOLN	6V≤V _{CC} ≤12V, I _O =200mA		10	100	mV
Load regulation	ΔVOLD	5mA≤I _O ≤200mA		10	100	mV

 $[\]overline{^*1}$. Total current consumption of $V_{CC}1$ and $V_{CC}2$ when non-load.

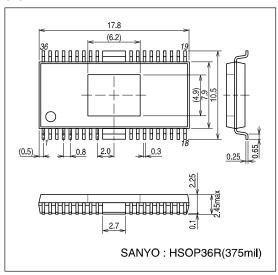
^{*2.} Input AMP is BUFFER AMP.

^{*3.} Voltage differences between both ends of load (8 Ω). Output is saturated.

^{*4.} When MUTE is "H", output is ON. When MUTE is "L", output is OFF (HI impedance).

^{*5.} Input OP-AMP SOURCE is constant current. Since $11k\Omega$ resistance to the next level is loaded, special care should be taken for the gain setting of input OP-AMP.

^{*6.} When V_{IN}1-SW is "L", select AMP-A for input AMP and internal VREF (nearly equal to 2.5V) for VREF. When V_{IN}-SW is "H", select AMP-B for input AMP and external VREF (nearly equal to VREF-IN) for VREF.


^{*7.} Voltage of upper side (SOURCE) and lower side (SINK). For Normal/Reverse rotation. Output voltage is obtained by subtracting this value from V_{CC}.

^{*8.} Brake is short (GND) brake. Output of SINK side is ON.

^{*9. 5}VREG has built-in dropping protection circuit. Operates when base current is 10mA (TYP).

Package Dimensions

unit : mm 3251

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 2004. Specifications and information herein are subject to change without notice.