No. 5630 **LA6539M**

Three-Channel CD-ROM Bridge Driver (BTL)

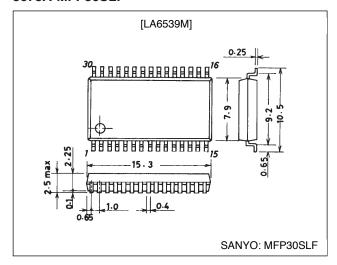
Overview

The LA6539M is a three-channel bridge driver (BTL) developed for use in CD-ROM drives.

Functions

• Three-channel balanced transformerless (BTL) power amplifier

I_O max: 1 AMuting circuit


• Thermal shutdown function

• Slew rate (SR): $0.5 \text{ V/}\mu\text{s}$ (typical)

Package Dimensions

unit: mm

3073A-MFP30SLF

Specifications

Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Market and a second	V _{CC} max		14	V
Maximum supply voltage	V _S max	Maximum rating for V _S 1 and V _S 2	14	V
Maximum input voltage	V _{IN}	V _{IN} 1 to V _{IN} 3	13	V
Mute pin voltage	V _{MUTE}	MUTE1, 2	13	V
Allowable power dissipation	Pd max		0.9	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		4 to 13	V
Operating voltage 2-1	V _S 1	The channel U operating voltage	4 to 13	V
Operating voltage 2-2	V _S 2	The channel U and W operating voltage	4 to 13	V

TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Operating Characteristics at Ta = 25°C, V_{CC} = 12 V, V_S1 = V_S2 = 5 V

Devenueles	O. make al	O an alikinana	Ratings			- Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
W I I dada	I _{CC} 1	All outputs on (mute 1 and 2: high) *1, 2	4	8	15	mA
V _{CC} no-load current drain	I _{CC} 2	All outputs off (mute 1 and 2: low) *1		4	10	mA
M. d. and a constitution	I _S 1-1	Channel U: on (mute 1: high)		5	10	mA
V _S 1 no-load current drain	I _S 1-2	Channel U: off (mute 1: low)			1	mA
V 0 1 1 1 -1'-	I _S 2-1	Channels V and W: on (mute 2: high) *2		10	20	mA
V _S 2 no-load current drain	I _S 2-2	Channels V and W: off (mute 2: low)			1	mA
Output offset voltage	V _{OF} 1 to V _{OF} 3	Voltage differential between the channel U and W outputs	-50		+50	mV
Input voltage range	V _{IN}	Voltage range for V _{IN} 1 to V _{IN} 3	0.5		5	V
D. Han a see life or a characteristic or	V _{BUFFER} 1	Voltage difference relative to 1/2 V _S 1	-50	0	+50	mV
Buffer amplifier output voltage	V _{BUFFER} 2	Voltage difference relative to 1/2 V _S 2	-50	0	+50	mV
Output source voltage	V _O 1	Output high, I _O = 700 mA, all + outputs	4.4	4.7		V
Output sink voltage	V _O 2	Output low, I _O = 700 mA, all + outputs		0.3	0.6	V
Closed circuit voltage gain VG		Bridge amplifier		6		dB
Slew rate	SR			0.5		V/μs
Mute on voltage	V _{MUTE1, 2}	The voltage applied to MUTE1 or MUTE2 at the point where the output goes on.		1.5	2	V
Mute on current	I _{MUTE1, 2}	The influx current to MUTE1 or MUTE2 at the point where the output goes on.		6	10	μΑ

Notes: 1. When MUTE1 is high, the channel U output will be on.

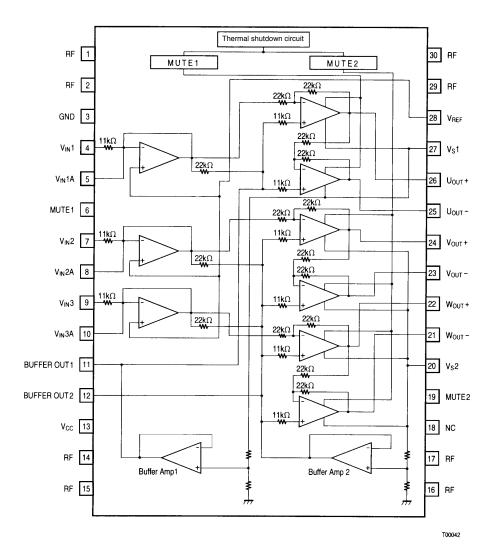
2. When MUTE2 is high, the channel V and W outputs will be on.

Truth Table

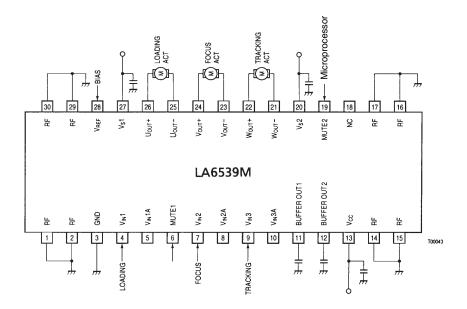
Input	MUTE	CH-U		CH-V		CH-W	
(V _{IN} pins)	(MUTE1, 2)	U _{OUT} +	U _{OUT} -	V _{OUT} +	V _{OUT} -	W _{OUT} +	W _{OUT} -
Н	Н	Н	L	Н	L	Н	L
	L	_	_	_	_	_	_
L	Н	L	Н	L	Н	L	Н
	L	_	_	_	_	_	_

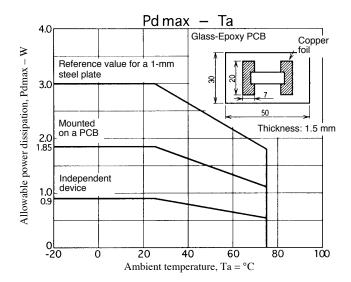
Note: MUTE1 only operates for channel U, and MUTE2 only operates for channels V and W. MUTE1 and MUTE2 operate independently.

Pin Functions


Pin No.	Pin	Function	Equivalent circuit
1, 2, 14, 15, 16, 17, 29, 30	RF	Substrate (lowest potential)	
3	GND	Ground	
4	V _{IN} 1	Channel U input	(I)
5	V _{IN} 1A	Channel U input (for gain adjustment)	
7	V _{IN} 2	Channel V input	① 11kn 1 1 1 1 1 1 1 1 1
8	V _{IN} 2A	Channel V input (for gain adjustment)	▎▗ _▊ ▗▊ ▗▗▗ ▗▗ ▗ ▎ ▋
9	V _{IN} 3	Channel W input	
10	V _{IN} 3A	Channel W input (for gain adjustment)	8
6	MUTE1	Channel U output on/off control	
11	BUFFER OUT1	Buffer amplifier 1 output (1/2 V _S 1: typical), Generates the output stage reference voltage for channel U.	
12	BUFFER OUT2	Buffer amplifier 2 output ($1/2 V_S 2$: typical), Generates the output stage reference voltage for channels V and W.	
13	V _{CC}	Power supply	
18	NC	Unused	
19	MUTE2	Channels V and W on/off control	
20	V _S 2	Channels V and W output stage power supply	

Continued on next page.


Continued from preceding page.


Pin No.	Pin	Function	Equivalent circuit
21	W _{OUT} -	Channel W inverting output	
22	W _{OUT} +	Channel W noninverting output	@@ <u> </u>
23	V _{OUT} -	Channel V inverting output	@@ @@ @@
24	V _{OUT} +	Channel V noninverting output	
25	U _{OUT} -	Channel U inverting output	
26	U _{OUT} +	Channel U noninverting output	@ @
27	V _S 1	Channel U output stage power supply	
28	V_{REF}	Reference voltage for the level shifting circuit (shared by all channels)	

Block Diagram

Sample Application Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees iointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 1997. Specifications and information herein are subject to change without notice.