Overview

The LA 6543 M is a 4 -channel bridge (BTL) driver developed for CD-ROM applications.

Functions

- 4-channel power amplifier with bridge circuit (BTL)
- I_{O} max: 1 A
- Integrated muting circuit (MUTE: Output OFF at Low, output ON at High. MUTE1 is for channel 1, and MUTE2 for channels 2, 3 and 4.)
- Integrated thermal shutdown circuit
- Divided output stage power supply (VS1: CH1, CH2, CH3; VS2: CH4)

Package Dimensions

unit: mm
3129-MFP36SLF

Specifications

Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	$\mathrm{V}_{\text {CC }} \mathrm{max}$		14	V
Maximum supply voltage 2	$\mathrm{V}_{\mathrm{S}} \mathrm{max}$	$\mathrm{V}_{\mathrm{S}} 1,2$	14	V
Input voltage	$\mathrm{V}_{\text {IN }}$ max	Input pins $\mathrm{V}_{\text {IN }} 1$ to 4	13	V
Mute pin voltage	$\mathrm{V}_{\text {MUTE }} \mathrm{max}$		13	V
Allowable power dissipation	Pd max	IC only	0.9	W
		Specified substrate Note 1	2.1	W
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

Note 1: Specified substrate $76.1 \times 114.3 \times 1.6$ (t)mm, glass exposy
Operating Conditions at $\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended operation voltage 1	$\mathrm{~V}_{\mathrm{CC}}$		4 to 13	V
Recommended operation voltage $2-1$	$\mathrm{~V}_{\mathrm{S}}$	$\mathrm{V}_{\mathrm{S}} 1: \mathrm{CH} 1$ to CH 3	4 to 13	V
Recommended operation voltage $2-2$	$\mathrm{~V}_{\mathrm{S}}{ }^{2}$	$\mathrm{~V}_{\mathrm{S}} 2: \mathrm{CH} 4$ output reference power supply	4 to 13	V

${ }^{*} \mathrm{~V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{S}} 1,2$

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

■ SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Electrical Characteristics at $\mathbf{V}_{\mathbf{C C}}=\mathbf{1 2 V}, \mathbf{V}_{\mathrm{S}}=\mathbf{5 V}, \mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
$\mathrm{V}_{\text {CC }}$ no-load current drain	$\mathrm{I}_{\mathrm{CC}} 1$	All outputs ON (MUTE1, MUTE2: High)	5	10	20	mA
	$\mathrm{I}_{\mathrm{Cc}}{ }^{2}$	All outputs OFF (MUTE1, MUTE2: Low)		5	10	mA
$\mathrm{V}_{S} 1$ no-load current drain	$\mathrm{I}_{\mathrm{S}} 1-1$	CH1 - CH2 ON (MUTE1, MUTE2: High)		20	30	mA
	$\mathrm{I}_{\mathrm{S}} 1-2$	CH1 - CH2 OFF (MUTE1, MUTE2: Low)			4	mA
$\mathrm{V}_{\mathrm{S}} 2$ no-load current drain	$\mathrm{I}^{2} 21$	CH3 - CH4 ON (MUTE1, MUTE2: High)		5	10	mA
	IS2-2	CH3 - CH4 OFF (MUTE1, MUTE2: Low)			4	mA
Output offset voltage	$\mathrm{V}_{\mathrm{OF}} 1$ to 4	Potential difference between plus and minus outputs for CH 1 to CH 4	-50		+50	mV
Input voltage range	V_{IN}	Input voltage range for $\mathrm{V}_{\mathrm{IN}} 1$ to $\mathrm{V}_{\mathrm{IN}} 4$	0.5		5	V
Output voltage (source)	Vsource	Plus and minus outputs at high level	4.4	4.7		V
		$\mathrm{I}_{\mathrm{O}}=700 \mathrm{~mA}$				
(sink)	Vsink	Plus and minus outputs at low level		0.3	0.6	V
		$\mathrm{I}_{\mathrm{O}}=700 \mathrm{~mA}$				
Closed circuit voltage gain	VG1	Voltage gain between CH 1 to CH 3 BTL amplifiers		7		dB
	VG2	Voltage gain between CH4 BTL amplifiers		14		dB
Slew rate	SR	(Note 1)		0.5		V/ $\mu \mathrm{s}$
Mute ON voltage	$\mathrm{V}_{\text {MUTE }}$	MUTE1, MUTE2 voltage when output is ON (Note 2)		1.5	2	V
Mute ON current	ImUTE	MUTE1, MUTE2 current when output is ON (Note 2)		6	10	$\mu \mathrm{A}$

Note 1: Guaranteed design value
Note 2: MUTE turns amplifier output ON at High and OFF at Low. (Output impedance becomes high.) This applies to MUTE1 and MUTE2.

Pin Assignment

Pin Function

Pin number	Pin name	Equivalent circuit	Pin function
$\begin{gathered} \hline 1,2 \\ 17,18 \\ 19,20 \\ 35,36 \end{gathered}$	RF		Substrate (minimum potential)
$\begin{gathered} 7 \\ 9 \\ 11 \\ 13 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}^{1}} \\ & \mathrm{~V}_{\mathrm{IN}^{2}} \\ & \mathrm{~V}_{\mathrm{IN}^{3}} \\ & \mathrm{~V}_{\mathrm{IN}^{4}} \\ & \hline \end{aligned}$		Input pin for CH 1 Input pin for CH2 Input pin for CH3 Input pin for CH 4
$\begin{gathered} \hline 8 \\ 10 \\ 12 \\ 14 \end{gathered}$	VG1 VG2 VG3 VG4		Input pin for CH 1 (gain adjustment) Input pin for CH 2 (gain adjustment) Input pin for CH3 (gain adjustment) Input pin for CH4 (gain adjustment)
16	V_{CC}		Power supply
22	$\mathrm{V}_{\text {REF }} \mathrm{OUT}$		Level shift circuit reference voltage ($\mathrm{V}_{\text {REF }} 1$ buffer amplifier output)
3	NC		May not be used.
4	$\mathrm{V}_{S S}{ }^{2}$		Connect to $\mathrm{V}_{\mathrm{S}}{ }^{2}$
5	$\mathrm{V}_{S S}{ }^{2-O U T}$		Output stage reference voltage output $\left(\mathrm{V}_{\mathrm{S}} 2-\mathrm{V}_{\mathrm{BE}}\right) / 2$: typ)
$\begin{gathered} 6 \\ 15 \end{gathered}$	MUTE1 MUTE2		CH1 output ON/OFF CH 2 to CH 4 output ON/OFF
21	$\mathrm{V}_{\text {REF }} \mathrm{IN}$		Level shift circuit reference voltage input ($\mathrm{V}_{\text {REF }} 1$ buffer amplifier input)
$\begin{aligned} & 23 \\ & 24 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 31 \\ & 32 \end{aligned}$	$\mathrm{V}_{0} 8$ $V_{0} 7$ $V_{0} 6$ $V_{0} 5$ $\mathrm{V}_{\mathrm{O}} 4$ $\mathrm{V}_{\mathrm{O}}{ }^{3}$ $V_{0} 2$ $\mathrm{V}_{0} 1$		CH 4 inverted output (AMP8 output) CH 4 non-inverted output (AMP7 output) CH 3 inverted output (AMP6 output) CH3 non-inverted output (AMP5 output) CH 2 inverted output (AMP4 output) CH2 non-inverted output (AMP3 output) CH1 inverted output (AMP2 output) CH1 non-inverted output (AMP1 output)
25	VS2		CH3 (AMP5, AMP6), CH4 (AMP7, AMP8) output stage power supply
30	VS1		CH1 (AMP1, AMP2), CH2 (AMP3, AMP4) output stage power supply
33	$\mathrm{V}_{\text {SS }} 1$-OUT		Output stage reference voltage ($\mathrm{V}_{\mathrm{SS}} 1 / 2: \mathrm{typ}$) ($\mathrm{V}_{\mathrm{REF}} 2$ buffer amplifier input)
34	$\mathrm{V}_{\text {SS }} 1$		Connect to VS1 (resistance split to generate $\left.\mathrm{V}_{\mathrm{SS}}{ }^{1-O U T}\right)$

Block Diagram

A10994

System Diagram (relationship between power supply and MUTE)

Sample Application Circuit

LA6543M

Gain Setting (input pins and adjustment pins)

A simplified diagram of V_{IN} and $V G$ is shown below.

1) Consider an $11 \mathrm{k} \Omega$ (typ.) inserted between $V_{I N}$ and VG.
2) When only $V_{I N}$ and not $V G$ is used, the $B T L$ gain (between $V_{O^{+}}$and $V_{O^{-}}$) is set to 6 dB (0 dB for AMP only). This also applies for the case when V_{IN} is not used and an $11 \mathrm{k} \Omega$ external resistor is connected to VG for input.
3) Gain is set by the input impedance as seen from point A.
When VG only is used and the external resistor is R, the $B T L$ gain (between $V_{O^{+}}$and $V_{O^{-}}$) is
$20 \log (11 \mathrm{k} \Omega / R)+6 \mathrm{~dB}$.
When an $11 \mathrm{k} \Omega$ resistor is inserted between $V_{I N}$ and $V G$, and input is via $V_{I N}$, the combined resistance $R z$ as seen from point A is $R z=5.5 \mathrm{k} \Omega$. Gain is
$20 \log (11 \mathrm{k} \Omega / 5.5 \mathrm{k} \Omega)+6 \mathrm{~dB}=12 \mathrm{~dB}$.

Offset Voltage

This IC incorporates a level shifter circuit. The input references the voltage $\mathrm{V}_{\text {REF }}$ to be applied and references the voltage $\left(\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{BE}}(0.7)\right) / 2 \mathrm{~V}$ to be output.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1998. Specifications and information herein are subject to change without notice.

