

September 2, 2005

Wideband LNA with AGC

TGA2513-EPU

Key FeaturesFrequency F

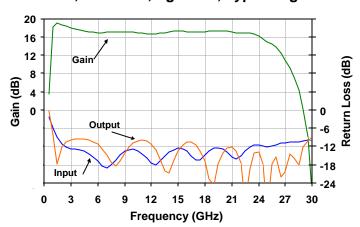
- Frequency Range: 2-23 GHz
- 17 dB Nominal Gain
- > 30 dB Adjustable Gain with Vg2
- 16 dBm Nominal P1dB
- < 2 dB Midband Noise Figure
- 0.15 um 3MI pHEMT Technology
- Nominal Bias: Vd = 5V, Id = 75 mA
- Chip Dimensions: 2.09 x 1.35 x 0.10 mm (0.082 x 0.053 x 0.004 in)

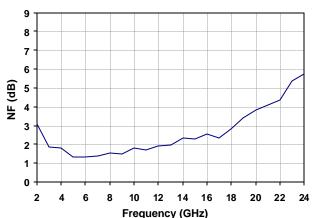
Product Description

The TriQuint TGA2513-EPU is a compact LNA/Gain Block MMIC with AGC via the control gate. The LNA operates from 2-23 GHz and is designed using TriQuint's proven standard 0.15 um gate pHEMT production process.

The TGA2513-EPU provides a nominal 16 dBm of output power at 1 dB gain compression with a small signal gain of 17 dB. Typical noise figure is < 3 dB from 2-18 GHz.

The TGA2513-EPU is suitable for a variety of wideband electronic warfare systems such as radar warning receivers, electronic counter measures, decoys, jammers and phased array systems.


The TGA2513-EPU is 100% DC and RF tested on-wafer to ensure performance compliance.


Primary Applications

- Wideband Gain Block / LNA
- X-Ku Point to Point Radio
- IF & LO Buffer Applications

Measured Fixtured Data

Vd = 5V, Id= 75mA, Vg2 = 2V, Typical Vg1 = -60mV

September 2, 2005

TGA2513-EPU

TABLE I MAXIMUM RATINGS 1/

SYMBOL	PARAMETER	VALUE	NOTES
V ⁺	Positive Supply Voltage	7 V	<u>2/</u>
V _{g1}	Gate 1 Supply Voltage Range	-2V TO 0 V	
V_{g2}	Gate 2 Supply Voltage Range	-0.5 V TO +3.5 V	
l ⁺	Positive Supply Current	151 mA	<u>2/</u>
I _G	Gate Supply Current	10 mA	
P_{IN}	Input Continuous Wave Power	21 dBm	<u>2</u> /
P_D	Power Dissipation	1.5 W	2/, <u>3</u> /
T _{CH}	Operating Channel Temperature	117 °C	<u>4</u> /, <u>5</u> /
T_M	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 117 °C	

- 1/ These ratings represent the maximum operable values for this device.
- 2/ Current is defined under no RF drive conditions. Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 3/ When operated at this power dissipation with a base plate temperature of 70 °C, the median life is 1 E+6 hours.
- 4/ Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 5/ These ratings apply to each individual FET.

TABLE II DC PROBE TEST

 $(T_A = 25 \, ^{\circ}C, Nominal)$

SYMBOL	PARAMETER	MINIMUM	MAXIMUM	UNIT
I _{dss, Q1- Q10}	Saturated Drain Current		216	mA
V _{p, Q1-Q10}	Pinch-off Voltage	-1	0	V
V _{BVGD, Q1-Q10}	Breakdown Voltage Gate- Drain	-30	-5	V
V _{BVGS, Q1-Q10}	Breakdown Voltage Gate- Source	-30	-5	V

Note: Q1-Q10 is a 720um size FET.

September 2, 2005 TGA2513-EPU

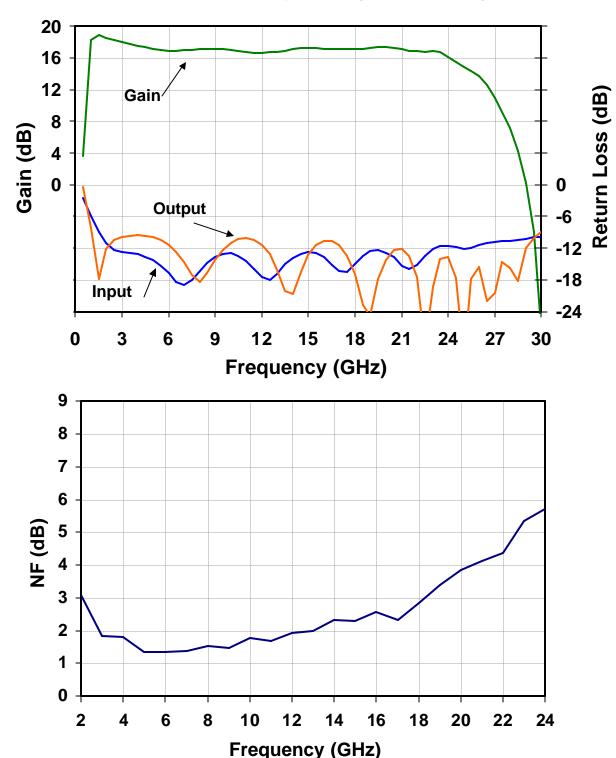
TABLE III RF CHARACTERIZATION TABLE

 $(T_A = 25 \,^{\circ}\text{C}, \text{ Nominal})$ Vd = 5V, Id = 75 mA Vg2 = 2V

SYMBOL	PARAMETER	TEST CONDITION	NOMINAL	UNITS
Gain	Small Signal Gain	f = 2-23 GHz	17	dB
IRL	Input Return Loss	f = 2-23 GHz	14	dB
ORL	Output Return Loss	f = 2-23 GHz	14	dB
NF	Noise Figure	f = 3-13 GHz f = 2-18 GHz	2 <3	dB
P_{1dB}	Output Power @ 1dB Gain Compression	f = 2-23 GHz	16	dBm

TABLE IV THERMAL INFORMATION*

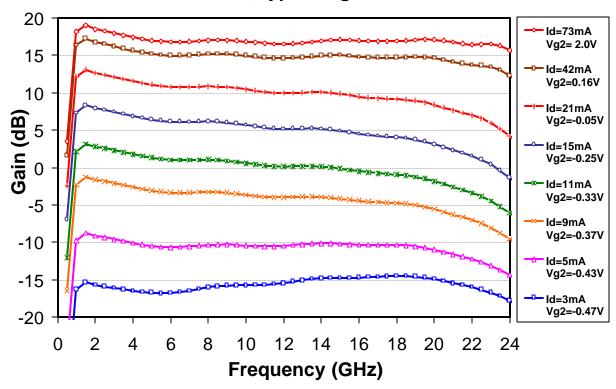
Parameter	Test Conditions	T _{CH} (°C)	R _{qJC} (°C/W)	T _M (HRS)
R _{0,JC} Thermal Resistance (channel to backside of carrier)	Vd = 5 V $I_D = 75 \text{ mA}$ Pdiss = 0.375 W	82	32	4.5 E+7

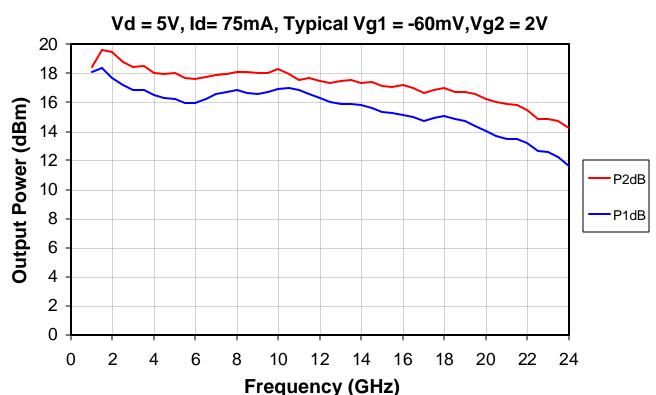

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

September 2, 2005 TGA2513-EPU

Measured Fixtured Data

Vd = 5V, Id= 75mA, Typical Vg1 = -60mV, Vg2 = 2V

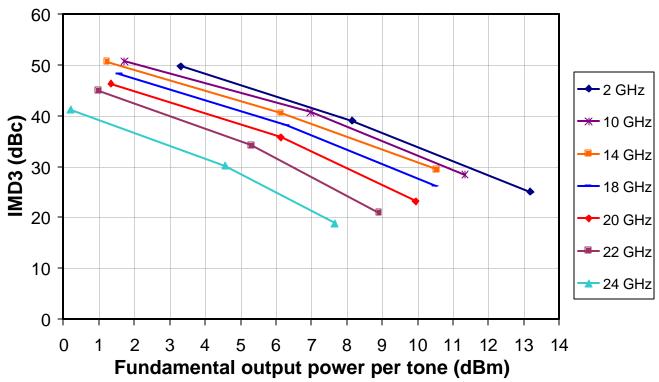


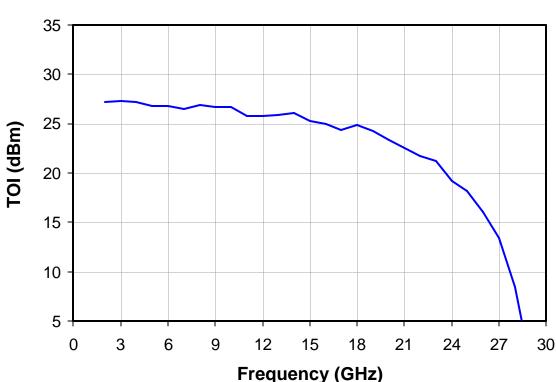

September 2, 2005

TGA2513-EPU

Measured Fixtured Data

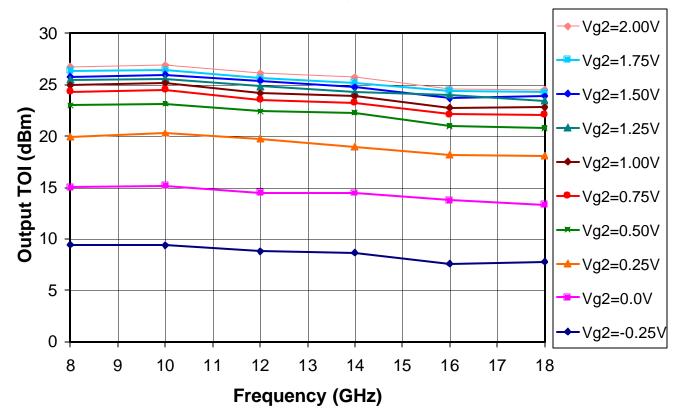
Vd = 5V, Typical Vg1 = -60 mV





September 2, 2005 TGA2513-EPU

Measured Fixtured Data

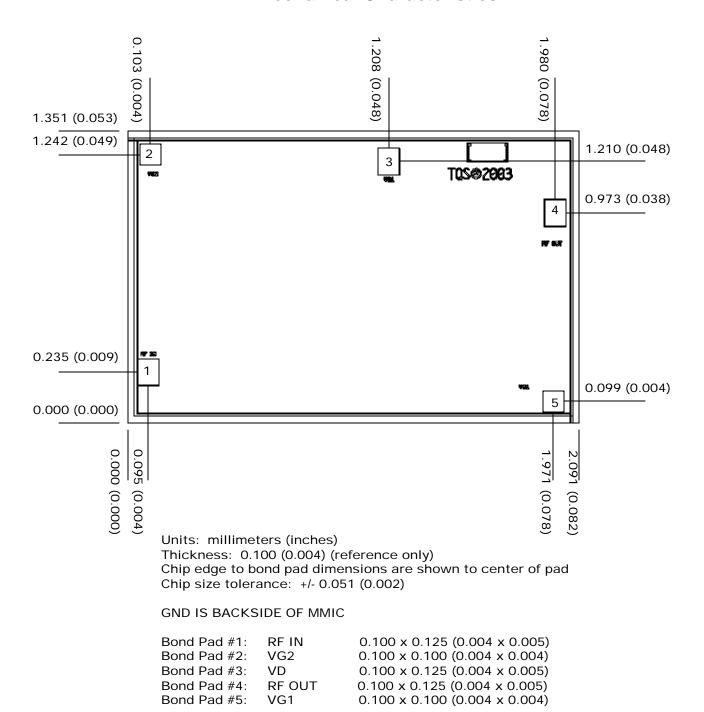


September 2, 2005

TGA2513-EPU

Measured Fixtured Data

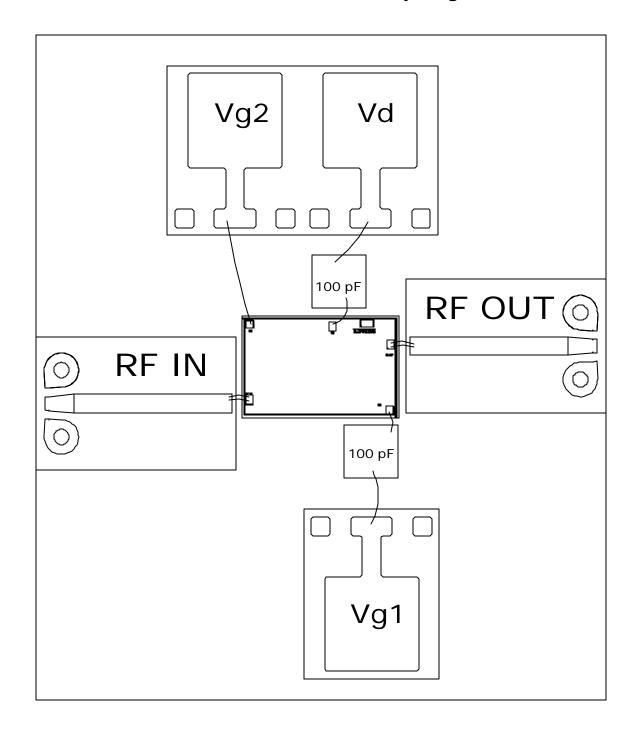
Vd = 5V, Id = 75mA, Pin = -10 dBm



September 2, 2005

TGA2513-EPU

Mechanical Characteristics


GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

September 2, 2005

TGA2513-EPU

Recommended Assembly Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

September 2, 2005 TGA2513-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C for 30 sec
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200 °C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.