



# Wideband Packaged HPA with AGC

## TGA2509-EPU-FL

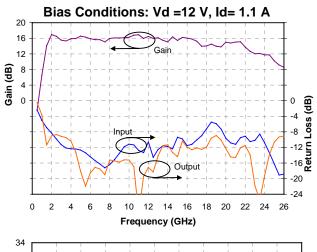


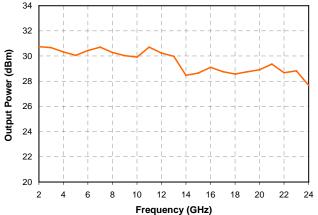
#### **Key Features**

- Frequency Range: 2-20 GHz
- 29 dBm Nominal P1dB
- 15 dB Nominal Gain, Midband
- 25dB AGC Range
- 10 lead flange package style
- Bias Conditions: Vd = 12 V, Idq = 1.1 A
- Package Dimensions: 0.7 x 0.3 x 0.1 in.

#### **Primary Applications**

- Wideband Power Amp
- Military EW and ECM
- Test Equipment
- VSAT and Digital Radio


### **Product Description**


The TriQuint TGA2509-EPU-FL is a Wideband High Power Amplifier with 25 dB AGC range. The HPA operates from 2-20 GHz and provides 29dBm of output power at 1 dB gain compression with small signal gain of 15 dB.

The TGA2509-EPU-FL is suitable for a variety of applications such as wideband electronic warfare systems, test equipment and VSAT and Digital Radio. The flange lead package has a high thermal conductivity copper alloy base.

Evaluation Boards are available.

#### **Measured Fixtured Data**







#### **Advance Product Information**

September 15, 2004 TGA2509-EPU-FL

# TABLE I MAXIMUM RATINGS 1/

| SYMBOL           | PARAMETER                             | VALUE                 | NOTES                  |
|------------------|---------------------------------------|-----------------------|------------------------|
| V <sup>+</sup>   | Positive Supply Voltage               | 12.5 V                | <u>2/</u>              |
| V <sub>g1</sub>  | Gate 1 Supply Voltage Range           | -2V TO 0 V            |                        |
| $V_{g2}$         | Gate 2 Supply Voltage Range           | -2V TO 0 V            |                        |
| V <sub>c</sub>   | AGC Control Voltage Range             | $V_c < +5 V$          |                        |
|                  |                                       | $V^{+} - V_{c} < 14V$ |                        |
| l <sup>+</sup>   | Positive Supply Current               | 1.4 A                 | <u>2/</u>              |
| I <sub>G</sub>   | Gate Supply Current                   | 70 mA                 |                        |
| P <sub>IN</sub>  | Input Continuous Wave Power           | 30 dBm                | <u>2</u> /             |
| P <sub>D</sub>   | Power Dissipation (without using AGC) | 13.2 W                | 2/, <u>3</u> /         |
| P <sub>D</sub>   | Power Dissipation (when Vc < +2V)     | 10.6 W                | 2/, <u>3</u> /         |
| T <sub>CH</sub>  | Operating Channel Temperature         | 150 °C                | <u>4</u> /, <u>5</u> / |
| T <sub>M</sub>   | Mounting Temperature (30 Seconds)     | 210 °C                |                        |
| T <sub>STG</sub> | Storage Temperature                   | -65 to 150 °C         |                        |

- $\underline{1}$ / These ratings represent the maximum operable values for this device.
- $\underline{2}$ / Current is defined under no RF drive conditions. Combinations of supply voltage, supply current, input power, and output power shall not exceed  $P_D$ .
- 3/ When operated at this power dissipation with a base plate temperature of 60 °C, the median life is 1 E+6 hours.
- 4/ Junction operating temperature will directly affect the device median time to failure (T<sub>M</sub>). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 5/ These ratings apply to each individual FET.





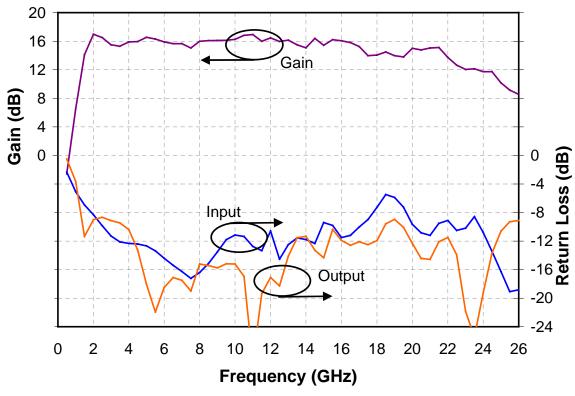
# TABLE II RF CHARACTERIZATION TABLE

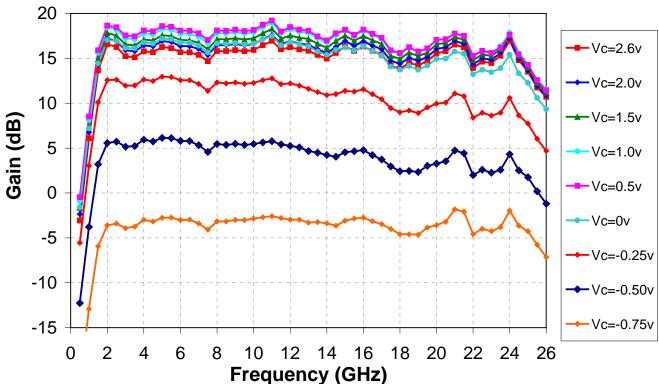
 $(T_A = 25 \, ^{\circ}C, Nominal)$ Vd = 12 V, Id = 1.08 A

| SYMBOL           | PARAMETER                                 | TEST<br>CONDITION | NOMINAL | UNITS |
|------------------|-------------------------------------------|-------------------|---------|-------|
| Gain             | Small Signal Gain                         | f = 2-20 GHz      | 15      | dB    |
| IRL              | Input Return Loss                         | f = 2-20 GHz      | 10      | dB    |
| ORL              | Output Return Loss                        | f = 2-20 GHz      | 12      | dB    |
| P <sub>1dB</sub> | Output Power @<br>1dB Gain<br>Compression | f = 2-20 GHz      | 29      | dBm   |

# TABLE III THERMAL INFORMATION

| Parameter                | Test Conditions        | T <sub>CH</sub> (°C) | R <sub>θJC</sub><br>(°C/W) | T <sub>M</sub><br>(HRS) |
|--------------------------|------------------------|----------------------|----------------------------|-------------------------|
| R <sub>θJC</sub> Thermal | Vd = 12 V              |                      |                            |                         |
| Resistance               | $I_D = 1.08 A$         | 150                  | 6.4                        | 1 E+6                   |
| (channel to backside     | Pdiss = 13.2 W         |                      |                            |                         |
| of package)              | (without using AGC)    |                      |                            |                         |
| R <sub>eJC</sub> Thermal | Vd = 12 V              |                      |                            |                         |
| Resistance               | $I_D = 0.88 \text{ A}$ | 150                  | 8.3                        | 1 E+6                   |
| (channel to backside     | Pdiss = 10.6 W         |                      |                            |                         |
| of package)              | (when using AGC)       |                      |                            |                         |

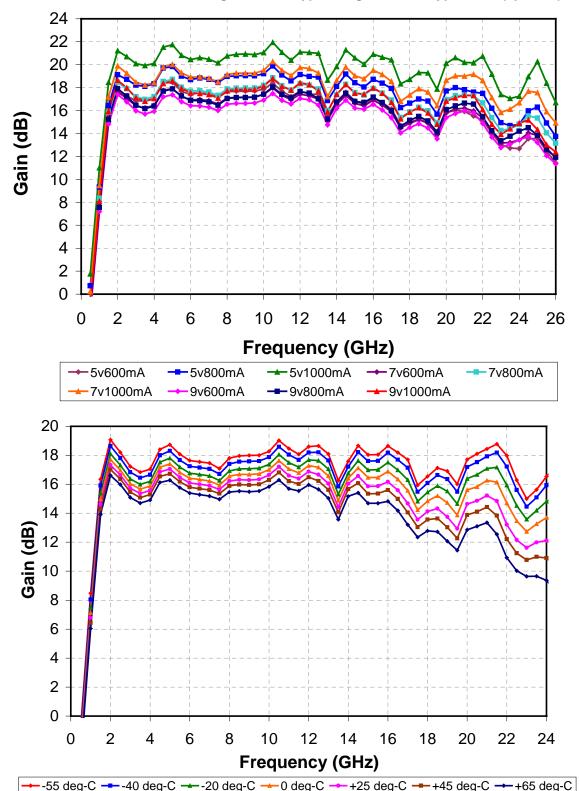

Note: Package attached with mounting hardware and metal shim (Al or In) to carrier at 65°C baseplate temperature. Worst case is at saturated output power when DC power consumption rises to 15 W with 1 W RF power delivered to load. Power dissipated is 14 W and the temperature rise in the channel is 90 °C. Baseplate temperature must be reduced to 60 °C to remain below the 150 °C maximum channel temperature.






## **Typical Fixtured Performance**

Bias Conditions: Vd = 12V, Id = 1.08A, Vg1 = -0.28V Typical, Vg2 = -0.35V Typical, Vc (optional) = 2.6V Typical

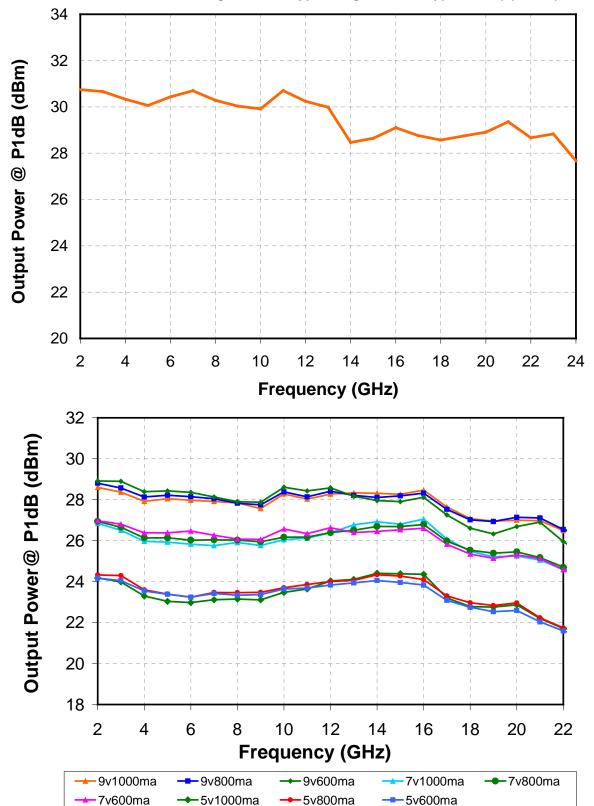







## **Typical Fixtured Performance**

Bias Conditions: Vd = 12V, Id = 1.08A, Vg1 = -0.28V Typical, Vg2 = -0.35V Typical, Vc (optional) = 2.6V Typical

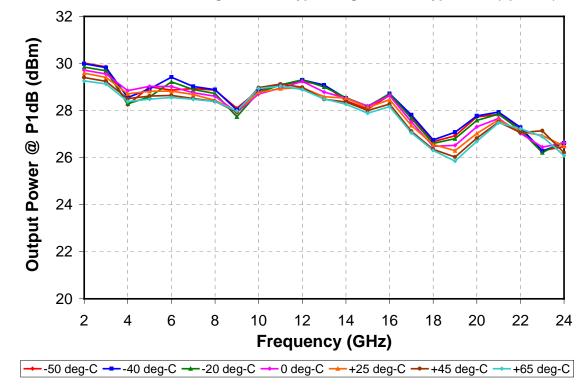







## **Typical Fixtured Performance**

Bias Conditions: Vd = 12V, Id = 1.08A, Vg1 = -0.28V Typical, Vg2 = -0.35V Typical, Vc (optional) = 2.6V Typical

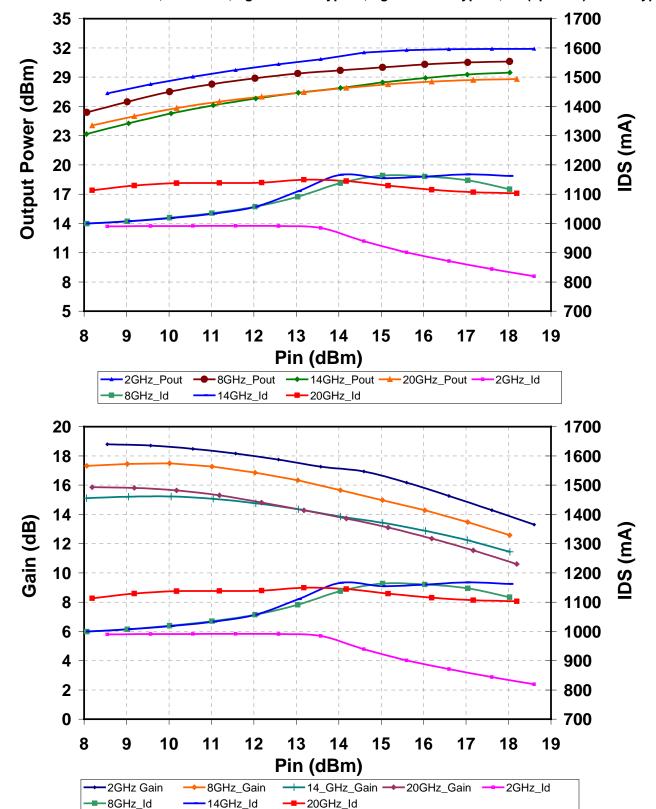




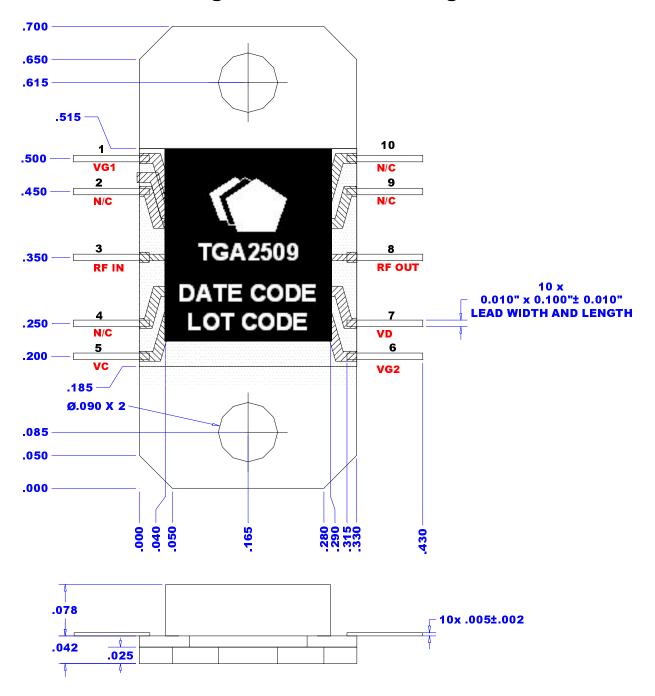



## **Typical Fixtured Performance**

Bias Conditions: Vd = 12V, Id = 1.08A, Vg1 = -0.28V Typical, Vg2 = -0.35V Typical, Vc (optional) = 2.6V Typical






## **Typical Fixtured Performance**

Bias Conditions: Vd = 12V, Id = 1.08A, Vg1 = -0.28V Typical, Vg2 = -0.35V Typical, Vc (optional) = 2.6V Typical

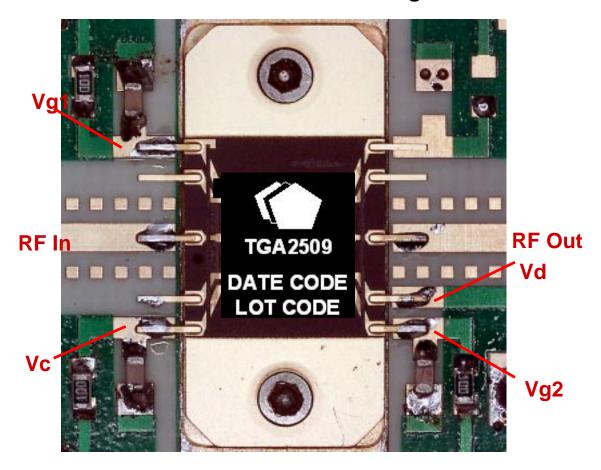


### **Package Dimensional Drawing**



Note: Units are in inches.

Package size tolerance ± 0.005 in.


GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

#### **Advance Product Information**



September 15, 2004 TGA2509-EPU-FL

## **Evaluation Board Drawing**

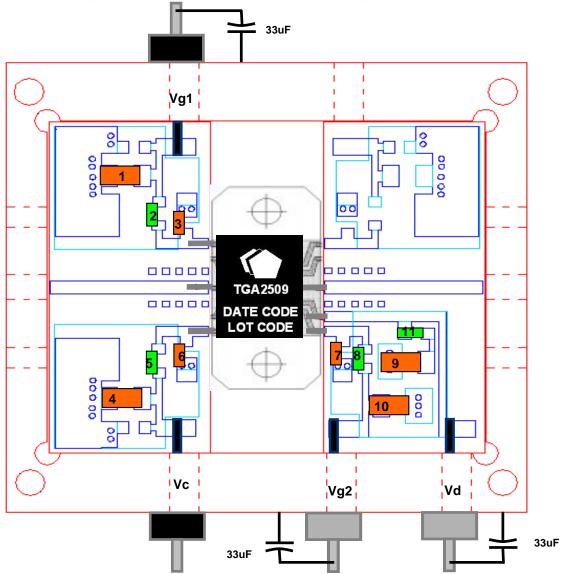


#### **Bias Procedures:**

Vc bias connection is optional, but the 0.1uF cap always needs to be connected.

#### For biasing without AGC control:

- 1. Apply -1.2V to Vg1, and -1.2V to Vg2.
- 2. Apply +12V to Vd.
- 4. Adjust Vg1 to attain 580 mA drain current (Id)
- 4. Adjust Vg2 to attain 1080 mA total drain current (Id).


#### For biasing with AGC control:

- 1. Apply -1.2V to Vg1 and -1.2V to Vg2
- 2. Apply +12V to Vd
- 3. Apply +2.6V to Vc
- 4. Adjust Vg1 to attain 580 mA drain current (Id)
- 5. Adjust Vg2 to attain 1080 mA total drain current (Id).
- 6. Adjust Vc as needed to control gain level.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.



# **Typical Evaluation Board Layout \***



| COMPONENT  | VALUE   |
|------------|---------|
| 1, 4, 9,10 | 1 uF    |
| 2, 5, 8    | 10 Ω    |
| 3, 6, 7    | 0.01 uF |
| 11         | 100 Ω   |

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

#### **Advance Product Information**



September 15, 2004 TGA2509-EPU-FL

#### Assembly of a TGA2509-EPU Flange Mount Package onto a Motherboard

#### **Manual Assembly for Prototypes**

- 1. Clean the motherboard or the similar module with Acetone. Rinse with alcohol and DI water. Allow the circuit to fully dry.
- 2. To improve the thermal and RF performance, TriQuint recommends using two # 0-80 bolts to attach a heat sink to the bottom of the package with an indium alloy preform, or equivalent, between the two.
- 3. Apply Tin/Lead solder, or equivalent, to each active pin of the TGA2509.
- 4 Clean the assembly with alcohol.

#### **Ordering Information**

| Part          | Package Style              |
|---------------|----------------------------|
| TG2509-EPU-FL | Flange (Leads bolted down) |

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.