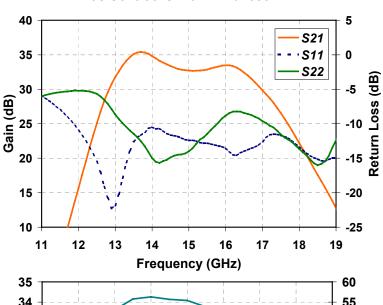
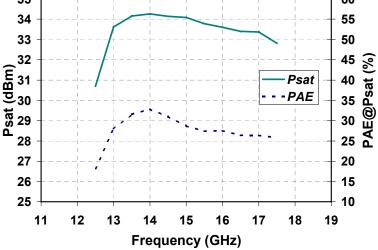


13 - 17 GHz 2 Watt, 32dB Power Amplifier TGA2503-EPU




Key Features and Performance

- 33 dBm Midband Pout
- 32 dB Nominal Gain
- 10 dB Typical Return Loss
- Built-in Directional Power Detector with Reference
- 0.5µm pHEMT, 3MI Technology
- Bias Conditions: 7V, 680mA
- Chip dimensions: 2.5 x 1.4 x 0.1 mm (98 x 55 x 4 mils)

Preliminary Measured Data

Bias Conditions: Vd=7V Id=680mA

Primary Applications

- VSAT
- Point-to-Point

Advance Product Information December 17, 2002

TGA2503-EPU

TABLE I MAXIMUM RATINGS

Symbol	Parameter <u>1</u> /	Value	Notes
V ⁺	Positive Supply Voltage	8 V	<u>2</u> /
V	Negative Supply Voltage Range	-5V to 0V	
I ⁺	Positive Supply Current (Quiescent)	TBD	<u>2</u> /
I _G	Gate Supply Current	18 mA	
P _{IN}	Input Continuous Wave Power	21.4 dBm	<u>2</u> /
P _D	Power Dissipation	6.83 W	<u>2</u> / <u>3</u> /
T _{CH}	Operating Channel Temperature	150 °C	<u>4</u> / <u>5</u> /
T _M	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings represent the maximum operable values for this device.
- <u>2</u>/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 3/ When operated at this bias condition with a base plate temperature of 70°C, the median life is reduced from 8.9E+6 to 1E+6.
- 4/ These ratings apply to each individual FET.
- $\underline{5}$ / Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

TABLE II DC PROBE TEST

 $(TA = 25 \, ^{\circ}C, Nominal)$

NOTES	SYMBOL	LIMI	UNITS	
		MIN	MAX	
<u>1</u> /	I _{DSS}	80	381	mA
<u>1</u> /	G_{M}	176	424	mS
<u>2</u> /	V _P	0.5	1.5	V
<u>2</u> /	V _{BVGS}	8	30	V
<u>2</u> /	V _{BVGD}	13	30	V

- 1/ Measurements are performed on a 800µm FET.
- $2/V_P$, V_{BVGD} , and V_{BVGS} are negative.

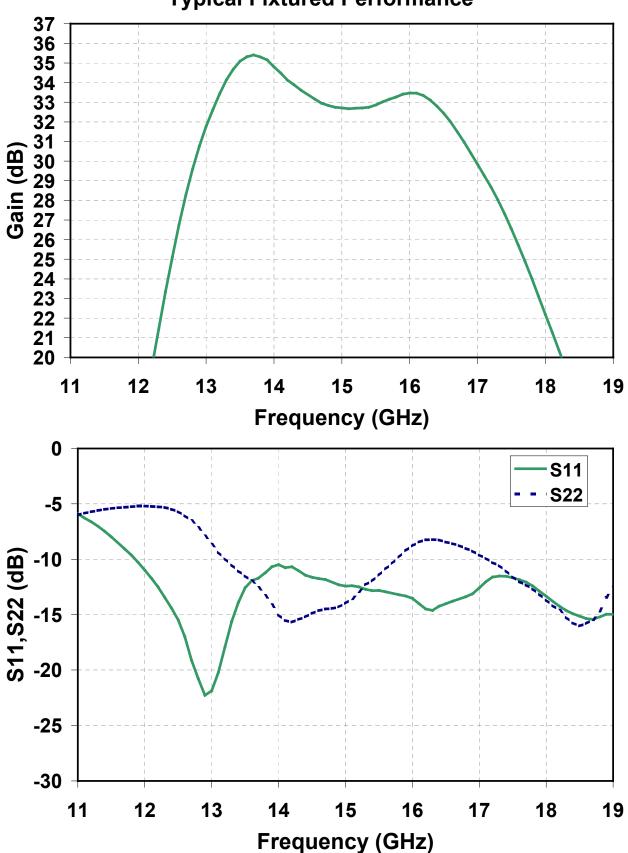
Advance Product Information December 17, 2002

TGA2503-EPU

TABLE III RF CHARACTERIZATION TABLE ($T_A = 25$ °C, Nominal) (Vd = 7V, Id = 680mA ± 5 %)

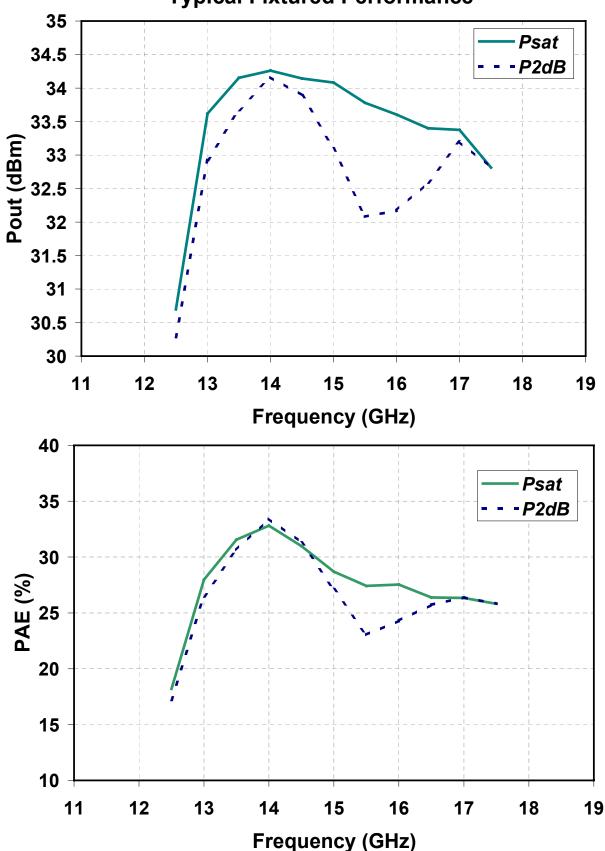
SYMBOL	PARAMETER	TEST	LIMITS		UNITS	
		CONDITION	MIN	TYP	MAX	
Gain	Small Signal Gain	F = 13-17		32		dB
IRL	Input Return Loss	F = 13-17		10		dB
ORL	Output Return Loss	F = 13-17		10		dB
PWR	Output Power @ Pin = +5 dBm	F = 13-17		33		dBm

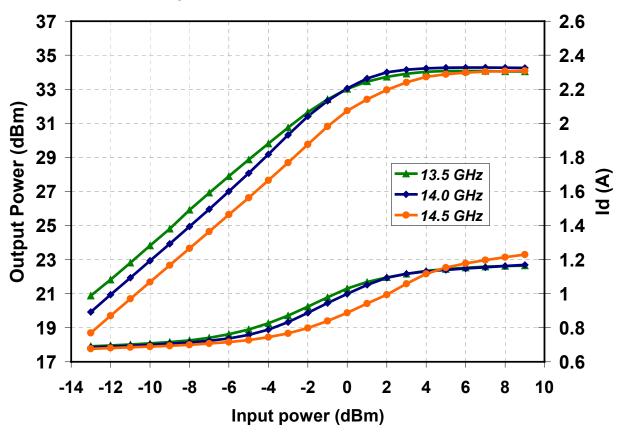
Note: Table III Lists the RF Characteristics of typical devices as determined by fixtured measurements.


TABLE IV THERMAL INFORMATION

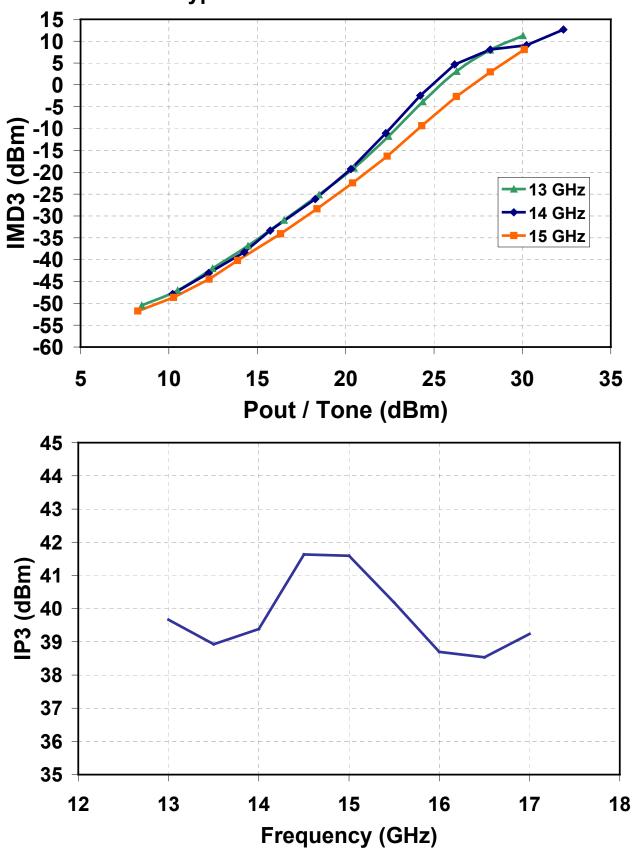
PARAMETER	TEST CONDITION	T _{CH} (°C)	R _{θjc} (°C/W)	MTTF (HRS)
R _{ejc} Thermal Resistance (Channel to Backside)	$V_D = 7V$ $I_D = 680 \text{mA}$ $P_D = 4.76 \text{W}$	125.74	11.71	8.9E+6

Note: Assumes eutectic attach using 1.5mil 80/20 AuSn mounted to a 20mil CuMo carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.



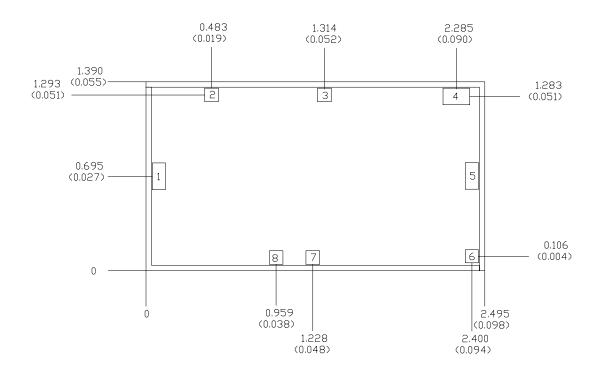


Typical Fixtured Performance



Typical Fixtured Performance

Typical Fixtured Performance



Advance Product Information December 17, 2002

TGA2503-EPU

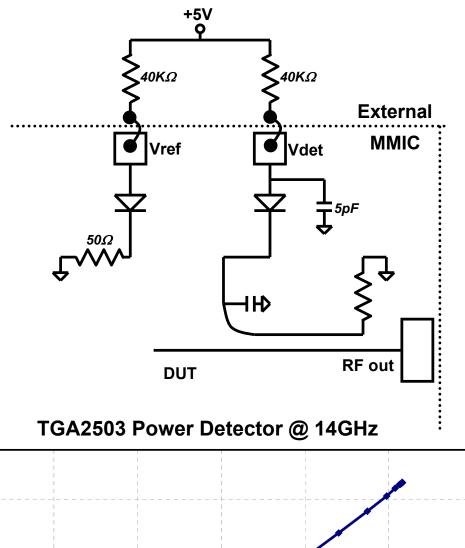
Mechanical Drawing

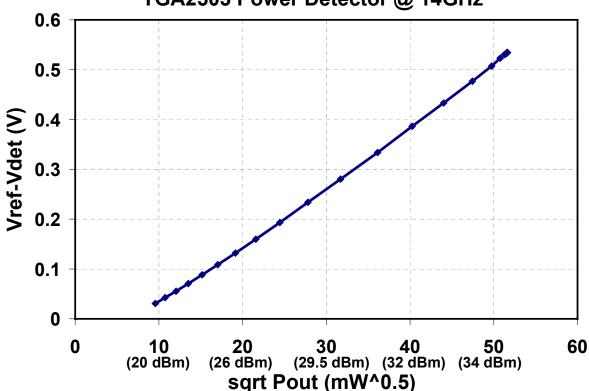
Units: millimeters (inches)

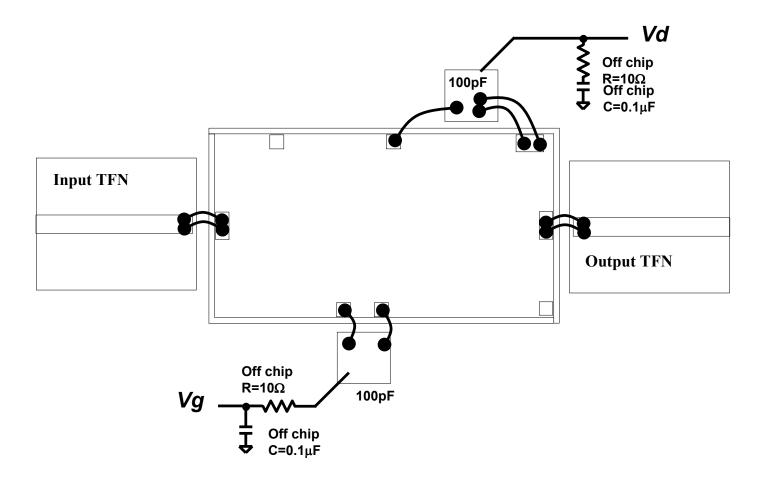
Thickness: 0.1016 (0.004) (reference only)

Chip edge to bond pad dimensions are shown to center of Bond pads.

Chip size tolerance: +/- 0.0508 (0.002)


RF Ground through Backside


Bond	Pad	#1	(RF Input)	0.100 × 0.200	(0.004 ×	0.008)
Bond	Pad	#2	(Vref)	0.100×0.100	$(0.004 \times$	0.004)
Bond	Pad	#3	(Vd3)	0.100×0.100	$(0.004 \times$	0.004)
Bond	Pad	#4	(Vd4)	0.200×0.125	(0.008 ×	0.005)
Bond	Pad	#5	(RF Dutput)	0.100×0.200	$(0.004 \times$	0.008)
Bond	Pad	#6	(Vdet)	0.100×0.100	(0.004 ×	0.004)
Bond	Pad	#7	(Vg4)	0.100×0.100	$(0.004 \times$	0.004)
Bond	Pad	#8	(Vg3)	0.100×0.100	(0.004 ×	0.004)


Power Detector

Chip Assembly & Bonding Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Advance Product Information December 17, 2002

TGA2503-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300°C.
 (30 seconds maximum)
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.