Power MOSFET -10 Amps, -20 Volts **P-Channel Enhancement-Mode** Single SOIC-8 Package

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Miniature SOIC-8 Surface Mount Package
- Diode Exhibits High Speed, Soft Recovery
- Avalanche Energy Specified
- SOIC-8 Mounting Information Provided
- Pb-Free Package is Available

Applications

• Power Management in Portable and Battery-Powered Products, i.e.: Cellular and Cordless Telephones and PCMCIA Cards

MAXIMUM RATINGS

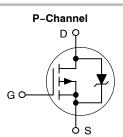
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	-20	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	±12	Vdc
Thermal Resistance – Junction–to–Ambient (Note 1) Total Power Dissipation @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $25^{\circ}C$ Continuous Drain Current @ $70^{\circ}C$ Maximum Operating Power Dissipation Maximum Operating Drain Current Pulsed Drain Current (Note 3)	R _{0JA} PD DD PD DD DM	50 2.5 -10 -8.0 0.6 -5.5 -50	°C/W W A A W A A
Thermal Resistance – Junction–to–Ambient (Note 2) Total Power Dissipation @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $25^{\circ}C$ Continuous Drain Current @ $70^{\circ}C$ Maximum Operating Power Dissipation Maximum Operating Drain Current Pulsed Drain Current (Note 3)	R _{0JA} PD DD PD DD DM	80 1.6 -8.8 -6.4 0.4 -4.5 -44	°C/W W A A W A A
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to +150	°C
$ \begin{array}{l} \mbox{Single Pulse Drain-to-Source Avalanche Energy - Starting T_J = $25^{\circ}C$ \\ (V_{DD}$ = -20 Vdc, V_{GS} = -4.5 Vdc, $Peak I_L$ = 5.0 Apk, L = 40 mH, R_G = $25 Ω) \\ \end{array} $	E _{AS}	500	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Mounted onto a 2" square FR-4 Board

(1 in sq, Cu 0.06" thick single sided), t = 10 seconds.

Mounted onto a 2" square FR-4 Board (1 in sq, Cu 0.06" thick single sided), t = steady state.


3. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2%.

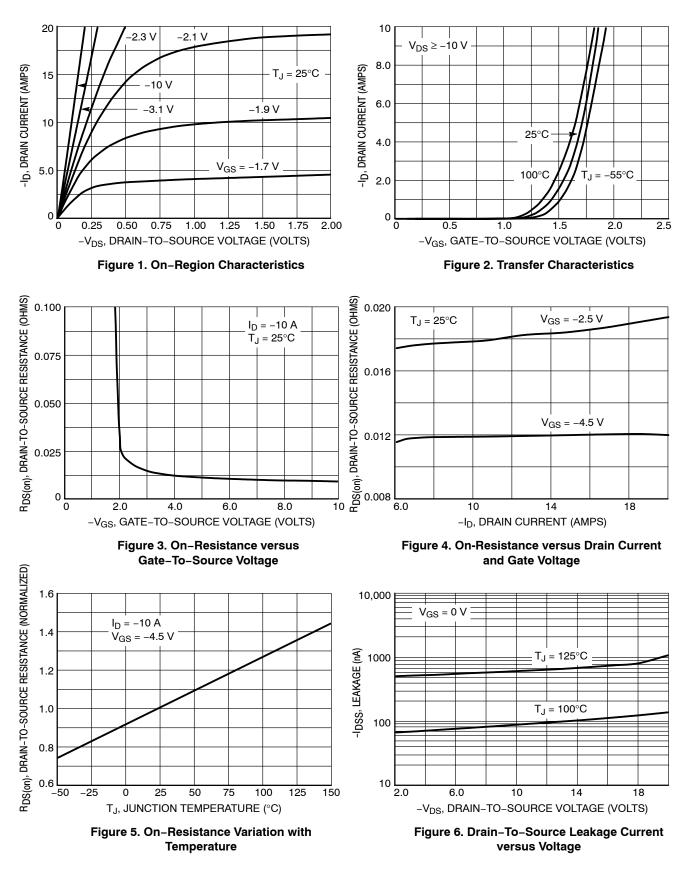
ON Semiconductor®

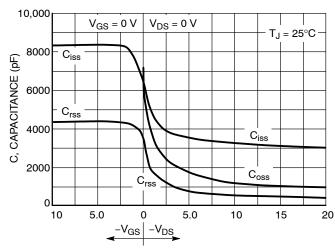
http://onsemi.com

-10 AMPERES -20 VOLTS 14 mΩ @ V_{GS} = -4.5 V

(Note: Microdot may be in either location)

ORDERING INFORMATION


Device	Package	Shipping [†]
NTMS10P02R2	SOIC-8	2500/Tape & Reel
NTMS10P02R2G	SOIC-8 (Pb-Free)	2500/Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) (Note 4)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage		V _{(BR)DSS}	00			Vdc
$(V_{GS} = 0 \text{ Vdc}, I_D = -250 \mu \text{Adc})$ Temperature Coefficient (Positive)			-20 -	_ _12.1	-	mV/°C
Zero Gate Voltage Drain Current					1.0	μAdc
(V _{DS} = −20 Vdc, V _{GS} = 0 Vdc, T _J = 25°C) (V _{DS} = −20 Vdc, V _{GS} = 0 Vdc, T _J = 70°C)			-	_	-1.0 -5.0	
$ Gate-Body Leakage Current \\ (V_{GS} = -12 Vdc, V_{DS} = 0 Vdc) $		I _{GSS}	_	_	-100	nAdc
Gate-Body Leakage Current (V _{GS} = +12 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	_	100	nAdc
ON CHARACTERISTICS						I
Gate Threshold Voltage		V _{GS(th)}				Vdc
$(V_{DS} = V_{GS}, I_D = -250 \mu Adc)$		()	-0.6 _	-0.88 2.8	-1.20 -	mV/°C
Temperature Coefficient (Negative)		R _{DS(on)}	-	2.0	_	
$(V_{GS} = -4.5 \text{ Vdc}, I_D = -10 \text{ Adc})$	Drain-to-Source On-State Resistance s = -4.5 Vdc, I _D = -10 Adc)		- 0.012	0.014	Ω	
$(V_{GS} = -2.5 \text{ Vdc}, I_D = -8.8 \text{ Adc})$			-	0.017	0.020	
Forward Transconductance (V _{DS} =	–10 Vdc, I _D = –10 Adc)	9FS	_	30	_	Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	3100	3640	pF
Output Capacitance	(V _{DS} = -16 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	-	1100	1670	
Reverse Transfer Capacitance	, ,	C _{rss}	_	475	1010	
SWITCHING CHARACTERISTICS (Notes 5 & 6)	_		_	_	
Turn-On Delay Time		1		05	05	
		t _{d(on)}	-	25	35	ns
Rise Time	$(V_{DD} = -10 \text{ Vdc}, I_D = -1.0 \text{ Adc},$	^L d(on) t _r	-	40	35 65	ns
Rise Time Turn-Off Delay Time	$(V_{DD} = -10 \text{ Vdc}, I_D = -1.0 \text{ Adc}, V_{GS} = -4.5 \text{ Vdc}, R_G = 6.0 \Omega)$			-		ns
	$V_{GS} = -4.5$ Vdc,	t _r	-	40	65	ns -
Turn-Off Delay Time	$V_{GS} = -4.5$ Vdc,	t _r t _{d(off)}	-	40 110	65 190	ns
Turn-Off Delay Time Fall Time	$V_{GS} = -4.5 \text{ Vdc},$ $R_G = 6.0 \Omega)$ $(V_{DD} = -10 \text{ Vdc}, I_D = -10 \text{ Adc},$	t _r t _{d(off)} t _f	-	40 110 110	65 190 190	•
Turn-Off Delay Time Fall Time Turn-On Delay Time	$V_{GS} = -4.5 \text{ Vdc},$ $R_G = 6.0 \Omega)$ $(V_{DD} = -10 \text{ Vdc}, I_D = -10 \text{ Adc},$ $V_{GS} = -4.5 \text{ Vdc},$	t _r t _{d(off)} t _f t _{d(on)} t _r	- - - -	40 110 110 25	65 190 190	•
Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time	$V_{GS} = -4.5 \text{ Vdc},$ $R_G = 6.0 \Omega)$ $(V_{DD} = -10 \text{ Vdc}, I_D = -10 \text{ Adc},$	t _r t _{d(off)} t _f t _{d(on)} t _r t _{d(off)}	- - - -	40 110 110 25 100	65 190 190 - -	•
Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$ $(V_{DD} = -10 \text{ Vdc}, I_{D} = -10 \text{ Adc},$ $V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$	t _r t _{d(off)} t _f t _{d(on)} t _r t _{d(off)} t _f	- - - -	40 110 110 25 100 100	65 190 190 - -	•
Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{GS} = -4.5 \text{ Vdc},$ $R_G = 6.0 \Omega)$ $(V_{DD} = -10 \text{ Vdc}, I_D = -10 \text{ Adc},$ $V_{GS} = -4.5 \text{ Vdc},$	t _r t _{d(off)} t _f t _{d(on)} t _r t _{d(off)} t _f Q _{tot}	- - - - - - -	40 110 110 25 100 100 125	65 190 - - - - -	ns
Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$ $(V_{DD} = -10 \text{ Vdc}, I_{D} = -10 \text{ Adc},$ $V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$ $(V_{DS} = -10 \text{ Vdc},$	t _r t _{d(off)} t _f t _{d(on)} t _r t _{d(off)} t _f Q _{tot} Q _{gs}	- - - - - - - - - - -	40 110 110 25 100 100 125 48	65 190 - - - - -	ns
Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge	$V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$ $(V_{DD} = -10 \text{ Vdc}, I_{D} = -10 \text{ Adc},$ $V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$ $(V_{DS} = -10 \text{ Vdc},$ $V_{GS} = -4.5 \text{ Vdc},$ $I_{D} = -10 \text{ Adc})$	t _r t _{d(off)} t _f t _{d(on)} t _r t _{d(off)} t _f Q _{tot}	- - - - - - - - - - -	40 110 110 25 100 100 125 48 6.5	65 190 - - - - 70 -	ns
Turn-Off Delay TimeFall TimeTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeFall ChargeGate-Source ChargeGate-Drain Charge	$V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$ $(V_{DD} = -10 \text{ Vdc}, I_{D} = -10 \text{ Adc},$ $V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$ $(V_{DS} = -10 \text{ Vdc},$ $V_{GS} = -4.5 \text{ Vdc},$ $I_{D} = -10 \text{ Adc})$	t _r t _{d(off)} t _f t _{d(on)} t _r t _{d(off)} t _f Q _{tot} Q _{gs}	- - - - - - - - - - -	40 110 110 25 100 100 125 48 6.5	65 190 - - - - 70 -	ns
Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge BODY-DRAIN DIODE RATINGS (N	$V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$ $(V_{DD} = -10 \text{ Vdc}, I_{D} = -10 \text{ Adc},$ $V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$ $(V_{DS} = -10 \text{ Vdc},$ $V_{GS} = -4.5 \text{ Vdc},$ $I_{D} = -10 \text{ Adc})$ ote 5) $(I_{S} = -2.1 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$	t _r t _{d(off)} t _f t _{d(on)} t _r t _{d(off)} t _f Q _{tot} Q _{gs} Q _{gd}	- - - - - - - - - - - - - - - -	40 110 110 25 100 100 125 48 6.5 17 -0.72	65 190 - - - - 70 - - - - - - - - -	ns
Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge BODY-DRAIN DIODE RATINGS (No Diode Forward On-Voltage	$V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$ $(V_{DD} = -10 \text{ Vdc}, I_{D} = -10 \text{ Adc},$ $V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$ $(V_{DS} = -10 \text{ Vdc},$ $V_{GS} = -4.5 \text{ Vdc},$ $I_{D} = -10 \text{ Adc})$ $(I_{S} = -2.1 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_{S} = -2.1 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_{S} = -10 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_{S} = -10 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$	$\begin{array}{c} t_r \\ \hline t_{d(off)} \\ t_f \\ \hline t_{d(on)} \\ t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline Q_{tot} \\ \hline Q_{gs} \\ \hline Q_{gd} \\ \hline \\ \hline \\ V_{SD} \\ \end{array}$		40 110 110 25 100 100 125 48 6.5 17 -0.72 -0.60 -0.90	65 190 - - - - 70 - - - 70 - - - - - - - - -	ns nC Vdc
Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge BODY-DRAIN DIODE RATINGS (No Diode Forward On-Voltage	$\begin{array}{c} V_{GS} = -4.5 \ \text{Vdc}, \\ R_G = 6.0 \ \Omega) \\ \\ (V_{DD} = -10 \ \text{Vdc}, \ \text{I}_D = -10 \ \text{Adc}, \\ V_{GS} = -4.5 \ \text{Vdc}, \\ R_G = 6.0 \ \Omega) \\ \\ \hline \\ (V_{DS} = -10 \ \text{Vdc}, \\ V_{GS} = -4.5 \ \text{Vdc}, \\ \text{I}_D = -10 \ \text{Adc}, \\ \text{I}_D = -10 \ \text{Adc}) \\ \\ \hline \\ \text{ote 5)} \\ \hline \\ \hline \\ (I_S = -2.1 \ \text{Adc}, \ V_{GS} = 0 \ \text{Vdc}) \\ (I_S = -10 \ \text{Adc}, \ V_{GS} = 0 \ \text{Vdc}) \\ (I_S = -10 \ \text{Adc}, \ V_{GS} = 0 \ \text{Vdc}) \\ (I_S = -10 \ \text{Adc}, \ V_{GS} = 0 \ \text{Vdc}, \\ I_J = 125^{\circ}\text{C}) \\ \hline \\ \hline \\ (I_S = -2.1 \ \text{Adc}, \ V_{GS} = 0 \ \text{Vdc}, \\ \hline \\ (I_S = -2.1 \ \text{Adc}, \ V_{GS} = 0 \ \text{Vdc}, \\ \hline \\ \hline \end{array}$	t _r t _{d(off)} t _f t _{d(on)} t _r t _{d(off)} t _f Q _{tot} Q _{gs} Q _{gd} V _{SD}		40 110 110 25 100 100 125 48 6.5 17 -0.72 -0.60 -0.90 -0.75	65 190 - - - - 70 - - - - - - - - - - - - -	ns nC Vdc Vdc
Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge BODY-DRAIN DIODE RATINGS (No Diode Forward On-Voltage	$\begin{array}{c} V_{GS} = -4.5 \ \text{Vdc}, \\ R_G = 6.0 \ \Omega) \\ \\ (V_{DD} = -10 \ \text{Vdc}, \ \text{I}_D = -10 \ \text{Adc}, \\ V_{GS} = -4.5 \ \text{Vdc}, \\ R_G = 6.0 \ \Omega) \\ \\ \hline \\ (V_{DS} = -10 \ \text{Vdc}, \\ V_{GS} = -4.5 \ \text{Vdc}, \\ \text{I}_D = -10 \ \text{Adc}, \\ \text{I}_D = -10 \ \text{Adc}) \\ \\ \hline \\ \hline \\ \text{ote 5)} \\ \hline \\ \hline \\ (I_S = -2.1 \ \text{Adc}, \ \text{V}_{GS} = 0 \ \text{Vdc}) \\ (I_S = -2.1 \ \text{Adc}, \ \text{V}_{GS} = 0 \ \text{Vdc}) \\ (I_S = -10 \ \text{Adc}, \ \text{V}_{GS} = 0 \ \text{Vdc}) \\ \hline \\ (I_S = -10 \ \text{Adc}, \ \text{V}_{GS} = 0 \ \text{Vdc}, \\ I_J = 125^{\circ}\text{C}) \\ \hline \end{array}$	t _r t _{d(off)} t _f t _{d(on)} t _r t _{d(off)} t _f Q _{tot} Q _{gs} Q _{gd} V _{SD} V _{SD} t _{rr}		40 110 110 25 100 100 125 48 6.5 17 -0.72 -0.60 -0.75 65	65 190 - - - 70 - - - - - - 100	ns nC Vdc Vdc

 $\begin{array}{ll} \mbox{4. Handling precautions to protect against electrostatic discharge is mandatory.} \\ \mbox{5. Indicates Pulse Test: Pulse Width = 300 μs max, Duty Cycle = 2%.} \\ \mbox{6. Switching characteristics are independent of operating junction temperature.} \\ \end{array}$

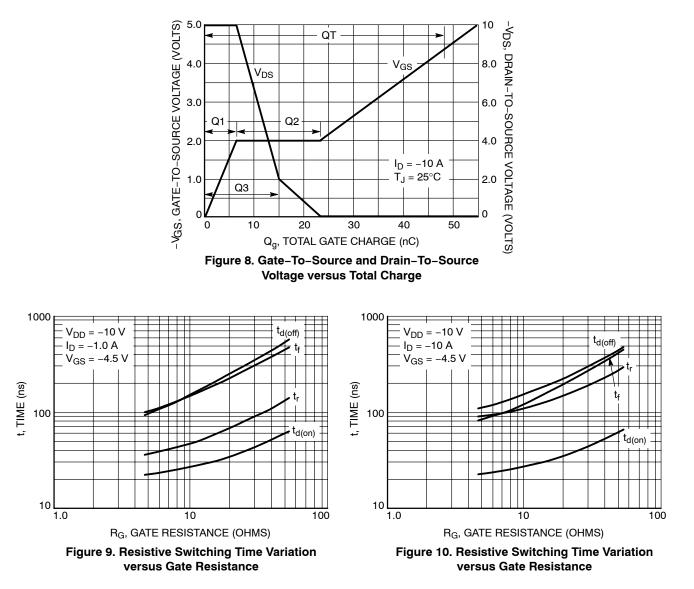


Figure 7. Capacitance Variation

DRAIN-TO-SOURCE DIODE CHARACTERISTICS

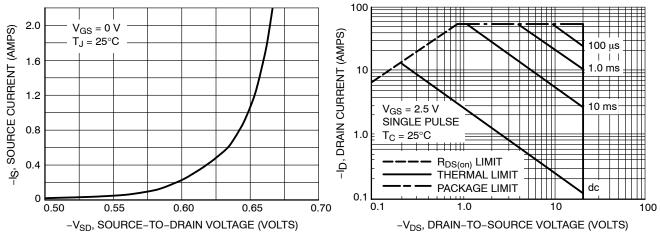
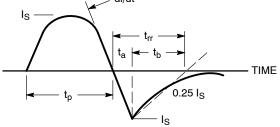



Figure 11. Diode Forward Voltage versus Current Figure 12. Maximum Rated Forward Biased Safe Operating Area

TYPICAL ELECTRICAL CHARACTERISTICS

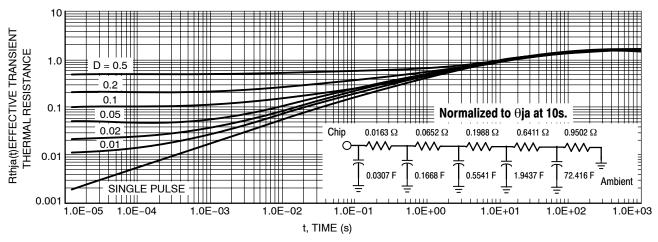
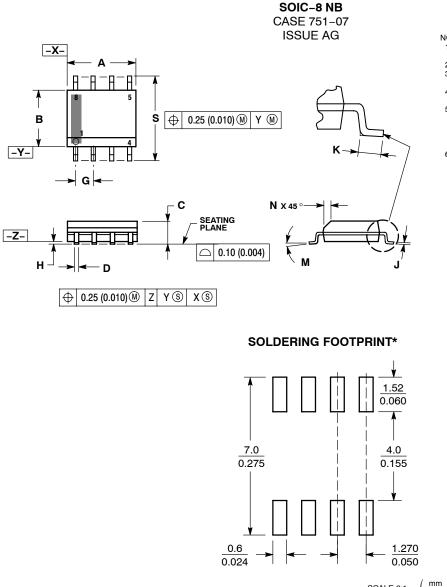



Figure 14. Thermal Response

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- 2
- З.
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) DED SIDE 4
- PFR SIDE DIMENSION D DOES NOT INCLUDE DAMBAR 5.
- PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

751-01 THRU 751-06 ARE OBSOLETE. NEW 6. STANDARD IS 751-07.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
Κ	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

STYLE 12: PIN 1. SOURCE

2. SOURCE

З. SOURCE

4. 5. GATE

- DRAIN 6. DRAIN
- 7 DRAIN
- 8. DRAIN

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SCALE 6:1

(inches

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.