Trench Power MOSFET 20 V, 9.0 A, Single P-Channel, SO-8

Features

- Leading -20 V Trench for Low R_{DS(on)}
- Surface Mount SO-8 Package Saves Board Space
- Lead-Free Package for Green Manufacturing (G Suffix)

Applications

- · Power Management
- Load Switch
- Battery Protection

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
–20 V	16 mΩ @ −4.5 V	-9.0 A
	22 mΩ @ −2.5 V	0.071

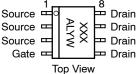
P-Channel MOSFET

S

Rating		Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	-20	V	
Gate-to-Source Voltage		V _{GS}	±8.0	V	
Continuous Drain Current	Steady State		-6.9		
	t ≤ 10 s	ID	-9.0	A	
Pulsed Drain Current	t = 10 μs	I _{DM}	-30	А	
Power Dissipation	Steady State	PD	1.38	W	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	–55 to 150	°C	
Continuous Source Current (Body Diode)		ا _S	-6.9	A	
Lead Temperature for Soldering Purposes (1/8" from case for 10 seconds)		TL	260	°C	

THERMAL RESISTANCE RATINGS

Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	90	°C/W
Junction-to-Ambient – t \leq 10 s (Note 1)	R _{0JA}	50	

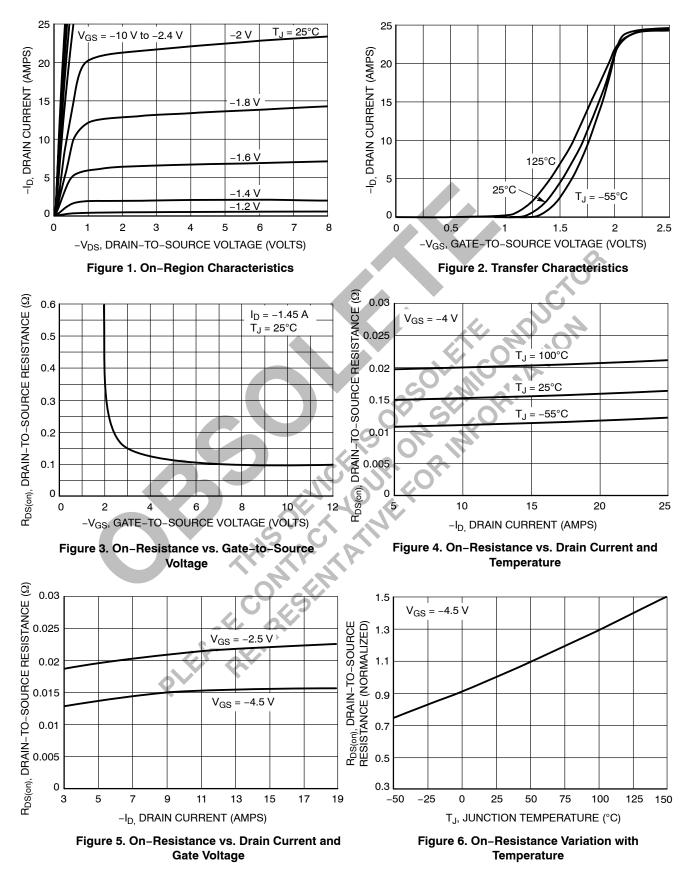

PIERSE PER 1. Surface-mounted on FR4 board using 1" sq. pad size (Cu. area = 1.127 in. sq. [1 oz.] including traces).

SBSOLFNG ORINFORM n

MARKING DIAGRAM & PIN ASSIGNMENT

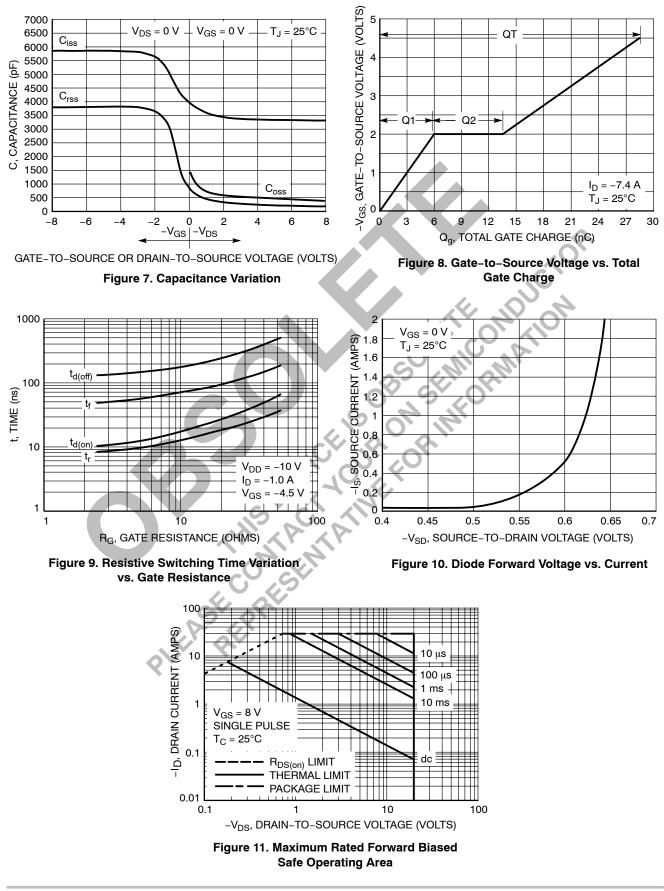
1

XXX = Specific Device Code

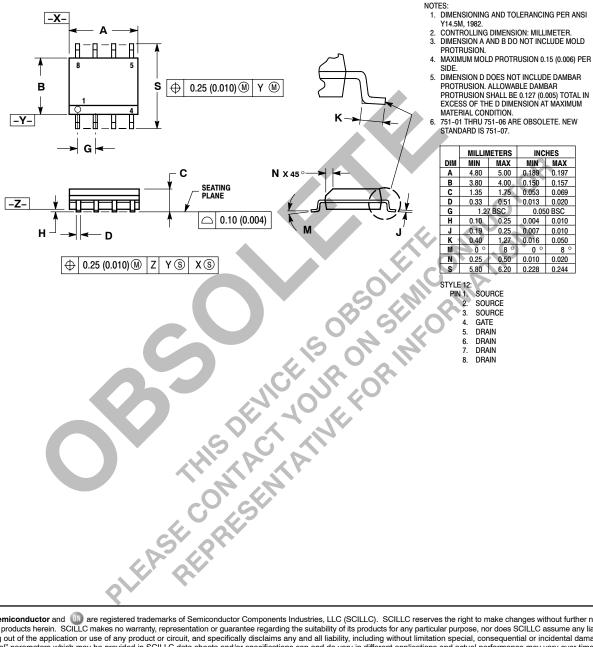

- = Assembly Location Α
 - = Wafer Lot
 - = Year
- W = Work Week

ORDERING INFORMATION

Device	Package	Shipping
NTMS4101PR2	SO-8	2500/Reel
NTMS4101PR2G	SO-8 (Pb-Free)	2500/Reel


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•				
Drain-to-Source Breakdown Voltage	V_{GS} = 0 V, I_{D} = –250 μA	V _{(BR)DSS}	-20			V
Zero Gate Voltage Drain Current	$V_{GS} = 0 V, V_{DS} = -16 V$	I _{DSS}			-10	μA
Gate-to-Source Leakage Current	V_{GS} = ±8.0 V, V_{DS} = 0 V	I _{GSS}			±100	nA
ON CHARACTERISTICS (Note 2)	-					
Gate Threshold Voltage	V_{GS} = V_{DS} , I_D = -250 μ A	V _{GS(th)}	-0.45			V
Drain-to-Source On-Resistance	V_{GS} = -4.5 V, I _D = -6.9 A	R _{DS(on)}		16	19	mΩ
	V_{GS} = -2.5 V, I _D = -6.5 A			22	30	
Forward Transconductance	V _{DS} = -15 V, I _D = -6.9 A	9fs		70		S
HARGES AND CAPACITANCES	•					
Input Capacitance		C _{iss}		3200	0	pF
Output Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -10 V	C _{oss}		320	~	
Reverse Transfer Capacitance	VDS = =10 V	C _{rss}		192		
Total Gate Charge		Q _{G(TOT)}		29.5	32	nC
Gate-to-Source Charge	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $I_D = -6.9 \text{ A}$	Q _{GS}		6.0	3	
Gate-to-Drain Charge	0.0 A	Q _{GD}		7.5	*	
WITCHING CHARACTERISTICS (Note	3)		<u>.</u>	0		
Turn-On Delay Time		t _{d(on)}		12.5		ns
Rise Time	$V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$	tr	.0	9.0		
Turn-Off Delay Time	$\label{eq:VGS} \begin{array}{l} V_{GS} = -4.5 \mbox{ V}, \mbox{ V}_{DD} = -10 \mbox{ V}, \\ I_{D} = -1.0 \mbox{ A}, \mbox{ R}_{G} = 6.0 \Omega. \end{array}$	t _{d(off)}		144		
Fall Time		С <u>қ</u>		38.5		
RAIN-SOURCE DIODE CHARACTERIS	STICS					
Forward Diode Voltage	$V_{GS} = 0 V, I_{S} = -6.9 A$	V _{SD}		0.72	0.95	V
Reverse Recovery Time		t _{rr}		28	35	ns
Charge Time	$V_{GS} = 0 V, V_{DS} = -10 V,$	ta		12		
Discharge Time	dl _S /dt = 100 A/µs, I _S = –6.9 A	t _b		15		
Reverse Recovery Charge	1. 2. 2.	Q _{rr}		.017		nC
. Pulse Test: Pulse Width ≤[300 μs, Duty . Switching characteristics are independent	Cycle ≤ 2%. ent of operating junction temperature.					


TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

PACKAGE DIMENSIONS

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death asocciated with such unintended or unauthorized use persores that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Phone: 421 33 790 2910

Phone: 81-3-5773-3850

Japan Customer Focus Center

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative