July 2003

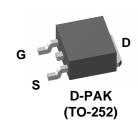
FDD6690A

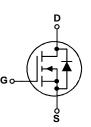
FAIRCHILD SEMICONDUCTOR

30V N-Channel PowerTrench^o MOSFET

General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on state resistance and yet maintain low gate charge for superior switching performance.


Applications


- DC/DC converter
- Motor Drives

Features

• 46 A, 30 V
$$R_{DS(ON)} = 12 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$$

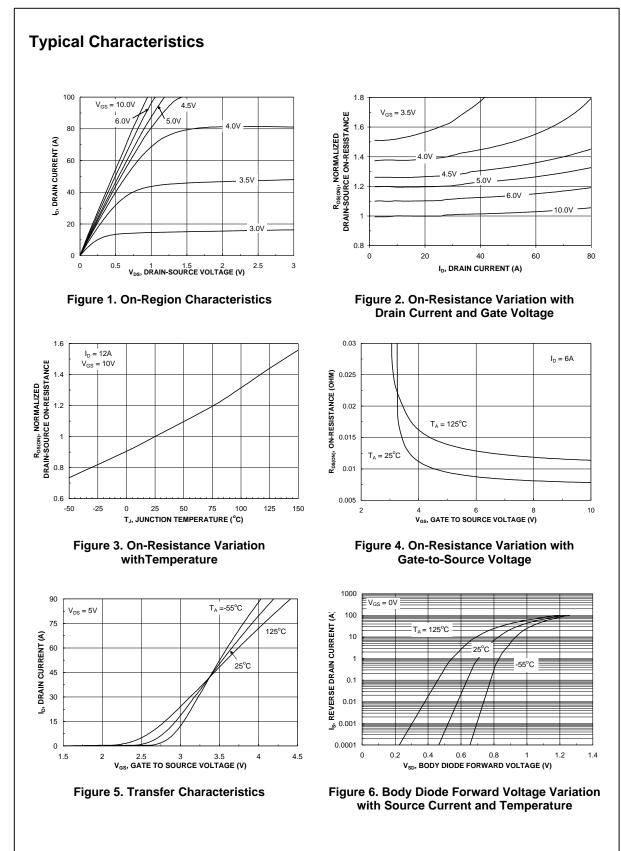
 $R_{DS(ON)} = 14 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$

- Low gate charge
- Fast Switching Speed
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$

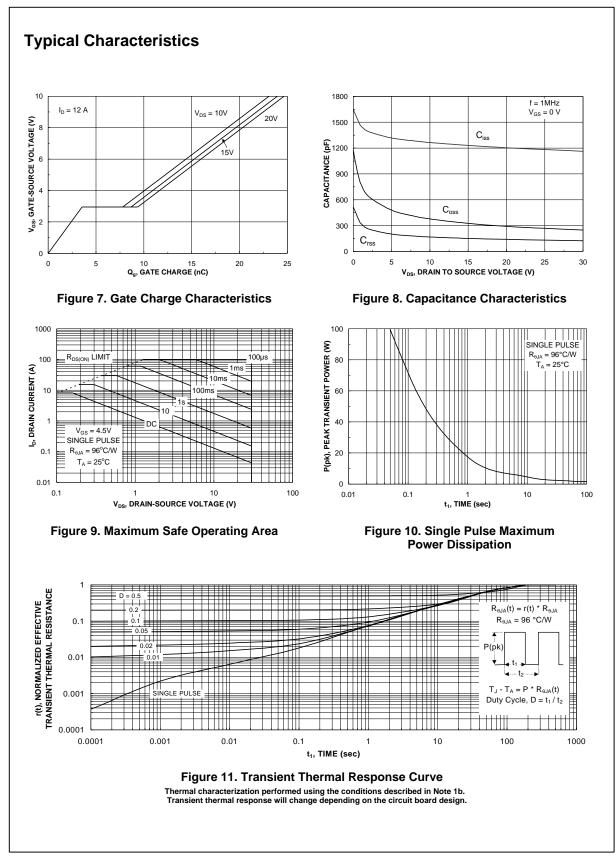
Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Para	meter		Ratings	Units
V _{DSS}	Drain-Source Voltage			30	V
V _{GSS}	Gate-Source Voltage			±20	V
I _D	Continuous Drain Current	@T _c =25°C	(Note 3)	46	А
		@T _A =25°C	(Note 1a)	12	
		Pulsed	(Note 1a)	100	
PD	Power Dissipation	@T _c =25°C	(Note 3)	56	W
		@T _A =25°C	(Note 1a)	3.3	
		@T _A =25°C	(Note 1b)	1.5	
T _J , T _{STG}	Operating and Storage Ju	nction Temperatu	re Range	-55 to +175	°C
Therma	I Characteristics				
$R_{\theta JC}$	Thermal Resistance, Junc	tion-to-Case	(Note 1)	2.7	°C/W
$R_{\theta JA}$	Thermal Resistance, Junc	tion-to-Ambient	(Note 1a)	45	
Reia	7		(Note 1b)	96	

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape width	Quantity
FDD6690A	FDD6690A	D-PAK (TO-252)	13"	12mm	2500 units

©2003 Fairchild Semiconductor Corp.


	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Avalanche Ratings (Note	2)	•		•	•
E _{AS}	Drain-Source Avalanche Energy	Single Pulse, $V_{DD} = 15 \text{ V}$, $I_D = 12 \text{ A}$			180	mJ
I _{AS}	Drain-Source Avalanche Current	-			12	А
Off Char	acteristics			1		1
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	30			V
<u>ΔBV_{DSS}</u> ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$		24		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	μA
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)	•				,
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.9	3	V
$\Delta V_{GS(th)}$ ΔT_{J}	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$		-5		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			7.7 9.9 11.4	12 14 19	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	50			А
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_D = 12 \text{ A}$		47		S
Dynamic	Characteristics			1		
C _{iss}	Input Capacitance			1230		pF
C _{oss}	Output Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		325		pF
Crss	Reverse Transfer Capacitance	f = 1.0 MHz		150		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		1.5		pF
Switchin	g Characteristics (Note 2)			1		
t _{d(on)}	g Characteristics (Note 2) Turn–On Delay Time			10	19	ns
t _r	Turn–On Rise Time	$V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$	-	7	13	ns
t _{d(off)}	Turn–Off Delay Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		29	46	ns
t _f	Turn-Off Fall Time			12	21	ns
Qq	Total Gate Charge			13	18	nC
Q _{qs}	Gate–Source Charge	$V_{DS} = 15V, I_D = 12 A,$	-	3.5		nC
Q _{gd}	Gate–Drain Charge	$V_{GS} = 5 V$		5.1		nC

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Diode Characteristics a	nd Maximum Ratings				
ls	Maximum Continuous Drain-Source	Diode Forward Current			2.3	А
V _{SD}	Drain–Source Diode Forward Voltage			0.76	1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 12 \text{ A}, \qquad d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$		24		nS
Q _{rr}	Diode Reverse Recovery Charge			13		nC
the drain pins.	R_{BJC} is guaranteed by design while R_{BCA} is determine a) $R_{BJA} = 45^{\circ}C/W \text{ w}$ 1 in ² pad of 2 oz c	hen mounted on a		= 96°C/W minimum p	when moun ad.	ited
		Scale 1 : 1 on letter size paper				
Pulse Test: Pul	se Width < 300μs, Duty Cycle < 2.0%					
Maximum curr	ent is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$					

FDD6690A Rev. EW)

FDD6690A Rev. EW)

FDD6690A Rev. EW)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	LittleFET™	Power247™	SuperSOT™-6
ActiveArray™	FAST®	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FASTr™	MicroFET™	QFET [®]	SyncFET™
CoolFET™	FRFET™	MicroPak™	QS™	TinyLogic®
CROSSVOLT™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics [™]	TINYOPTO™
DOME™	GTO™່	MSX™	Quiet Series [™]	TruTranslation™
EcoSPARK™	HiSeC™	MSXPro™	RapidConfigure™	UHC™
E ² CMOS [™]	I²C™	OCX™	RapidConnect™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	VCX™
FACT™	ISOPLANAR™	OPTOLOGIC[®]	SMART START™	
Across the boar	d. Around the world.™	OPTOPLANAR™	SPM™	
The Power Fran		PACMAN™	Stealth™	
Programmable A		POP™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production