Unit: mm

TOSHIBA Field Effect Transistor Silicon P/N-Channel MOS Type (P-Channel / N-Channel Ultra-High-Speed U-MOSIII)

TPC8406-H

High Efficiency DC ∕ DC Converter Applications

Notebook PC Applications

Portable Equipment Applications

CCFL Inverter Applications

• Small footprint due to a small and thin package

• High speed switching

• Low drain-source ON-resistance: P-Channel RDS (ON) = $24 \text{ m}\Omega$ (typ.)

N-Channel RDS (ON) = $22 \text{ m}\Omega$ (typ.)

• Small gate charge: P-Channel QSW = 9.7 nC (typ.)

N-Channel $Q_{SW} = 3.5 \text{ nC (typ.)}$

• High forward transfer admittance: P-Channel $|Y_{fs}| = 13 \text{ S (typ.)}$

N-Channel $|Y_{fs}| = 14 \text{ S (typ.)}$

• Low leakage current: P-Channel IDSS = $-10 \,\mu\text{A}$ (VDS = $-40 \,\text{V}$)

N-Channel IDSS = $10 \mu A (VDS = 40 V)$

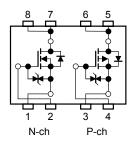
• Enhancement mode

: P-Channel V_{th} = -0.8 to -2.0 V (V_{DS} = -10 V, I_{D} = -1 mA)

: N-Channel $V_{th} = 1.1 \text{ to } 2.3 \text{ V (V}_{DS} = 10 \text{ V, I}_{D} = 1 \text{ mA)}$

Absolute Maximum Ratings (Ta = 25°C)

Characteristic		Symbol	Rat	Unit		
	Onaracionstic			N-Channel	OIII	
Drain-source v	Drain-source voltage		-40	40	V	
Drain-gate vol	tage (R _{GS} = 20 kΩ)	V_{DGR}	-40	40	V	
Gate-source v	oltage	V _{GSS}	±20	±20	V	
Drain current	DC (Note 1)	ΙD	-6.5	6.5	Α	
Diain current	Pulse (Note 1)	I _{DP}	-26	26	Α	
Drain power dissipation	Single-device operation (Note 3a)	P _{D(1)}	1.5	1.5	W	
(t = 10s) (Note 2a)	Single-device value at dual operation (Note 3b)	P _{D(2)}	1.1	1.1		
Drain power dissipation	Single-device operation (Note 3a)	P _{D(1)}	0.75	0.75		
(t = 10s) (Note 2b)	Single-device value at dual operation (Note 3b)	P _{D(2)}	0.45	0.45		
Single-pulse a	Single-pulse avalanche energy		19 (Note 4a)	19 (Note 4b)	mJ	
Avalanche cur	rent	I _{AR}	-6.5	6.5	Α	
	Repetitive avalanche energy Single-device value at operation (Note 2a, 3b, 5)		0.08		mJ	
Channel temp	Channel temperature		150		°C	
Storage temper	Storage temperature range			−55 to 150		


0.595TYP 1.27

1 SOURCE 4 GATE 2 GATE 5, 6 DRAIN 3 SOURCE 7, 8 DRAIN

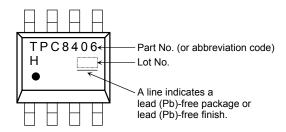
Weight: 0.085 g (typ.)

JEDEC JEITA TOSHIBA

Circuit Configuration

2-6J1E

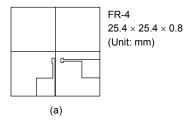
Note: For Notes 1 to 4, refer to the next page.

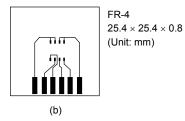

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

This transistor is an electrostatic-sensitive device. Handle with care.

Thermal Characteristics

Characteristic	Symbol	Max	Unit		
Thermal resistance, channel to ambient (t = 10s) (Note 2a)	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	83.3	°C/W	
	Single-device value at dual operation (Note 3b)	R _{th} (ch-a) (2)	114		
Thormal registance, channel to ambient	Single-device operation (Note 2a)	R _{th (ch-a) (1)}	167	C/VV	
Thermal resistance, channel to ambient (t = 10s) (Note 2b)	Single-device value at dual operation (Note 2b)	R _{th} (ch-a) (2)	278		


Marking



Note 1: The channel temperature should not exceed 150°C during use.

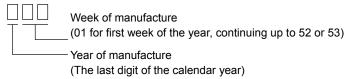
Note 2:

- a) Device mounted on a glass-epoxy board (a)
- b) Device mounted on a glass-epoxy board (b)

Note 3:

- a) The power dissipation and thermal resistance values are shown for a single device (During single-device operation, power is applied to one device only.).
- b) The power dissipation and thermal resistance values are shown for a single device (During dual operation, power is evenly applied to both devices.).

Note 4:


a)
$$V_{DD} = -24 \text{ V}$$
, $T_{ch} = 25 ^{\circ}\text{C}$ (Initial), $L = 0.5 \text{ mH}$, $R_G = 25 \Omega$, $I_{AR} = -6.5 \text{ A}$

b)
$$V_{DD}=24~V,~T_{ch}=25^{\circ}C$$
 (Initial), L = 0.5 mH, R_G = 25 $\Omega,~I_{AR}=6.5~A$

Note 5: Repetitive rating: pulse width limited by maximum channel temperature

Note 6: • on the lower left of the marking indicates Pin 1.

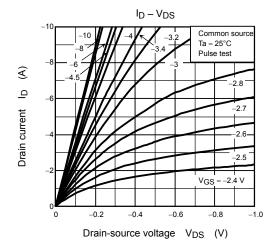
* Weekly code: (Three digits)

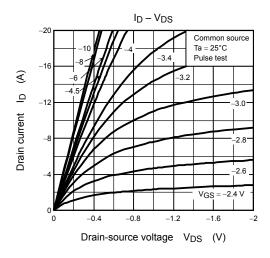
P-Channel Electrical Characteristics (Ta = 25°C)

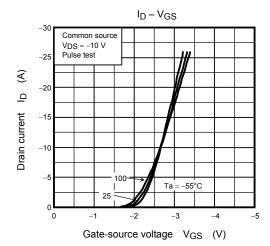
Ch	aracteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μА
Drain cutoff curre	ent	I _{DSS}	V _{DS} = -40 V, V _{GS} = 0 V	_	_	-10	μА
Drain-source bre	akdawa valtaga	V (BR) DSS	$I_D = -10$ mA, $V_{GS} = 0$ V	-40	_	_	V
Diam-source bre	akuowii voilage	V (BR) DSX	$I_D = -10 \text{ mA}, V_{GS} = 20 \text{ V}$	-20	_	_	
Gate threshold v	oltage	V _{th}	$V_{DS} = -10 \text{ V}, I_{D} = -1 \text{ mA}$	-0.8	_	-2.0	V
Drain-source ON	raciatanaa	Dec (c)	$V_{GS} = -4.5 \text{ V}, I_D = -3.3 \text{ A}$	_	29	37	m()
Diam-source ON	-resistance	R _{DS} (ON)	$V_{GS} = -10 \text{ V}, I_D = -3.3 \text{ A}$	_	24	30	mΩ
Forward transfer	admittance	Y _{fs}	$V_{DS} = -10 \text{ V}, I_D = -3.3 \text{ A}$	6.5	13	_	S
Input capacitance	е	C _{iss}		_	1190	_	pF
Reverse transfer	capacitance	C _{rss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	170	_	
Output capacitance		C _{oss}		_	250	_	
	Rise time	t _r	V _{GS} $_{-10}$ V $_{$	_	5	_	
Switching time	Turn-on time	t _{on}		_	12	_	no
Switching time	Fall time	t _f		_	12	_	- ns
	Turn-off time	t _{off}			43		
Total gate charge (gate-source plus gate-drain)		Qg	$\begin{split} V_{DD} &\simeq -32 \text{ V, V}_{GS} = -10 \text{V} \\ I_D &= -6.5 \text{ A} \end{split}$	ı	27	ı	
			$\begin{aligned} V_{DD} &\simeq -32 \text{ V}, \text{ V}_{GS} = -5 \text{ V} \\ I_D &= -6.5 \text{ A} \end{aligned}$	_	15	_	nC
Gate-source charge 1		Q _{gs1}	$V_{DD} \simeq -32 \text{ V}, V_{GS} = -10 \text{ V}$ $I_D = -6.5 \text{ A}$		3.2		
Gate-drain ("Miller") charge		Q _{gd}		_	8.1	_	
Gate switch char	ge	Q _{SW}] -	_	9.7	_	

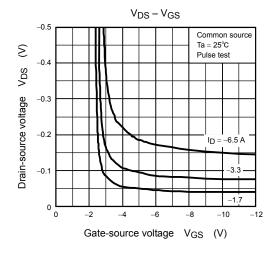
Source-Drain Ratings and Characteristics (Ta = 25°C)

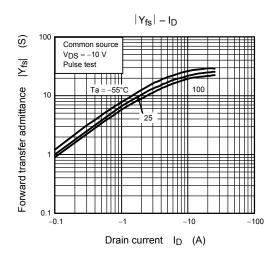
Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	_	_	_	-26	Α
Forward voltage (diode)		V _{DSF}	$I_{DR} = -6.5 \text{ A}, V_{GS} = 0 \text{ V}$	_	_	1.2	V

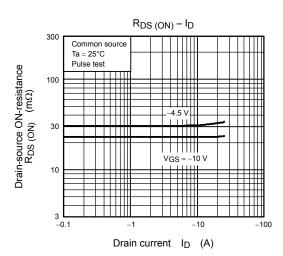

N-channel Electrical Characteristics (Ta = 25°C)

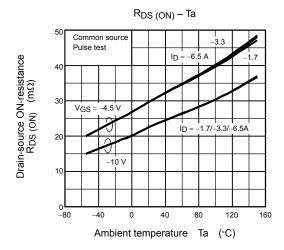

Ch	naracteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$		_	±10	μА
Drain cutoff curre	ent	I _{DSS}	V _{DS} = 40 V, V _{GS} = 0 V		_	10	μА
Drain source bro	akdown voltago	V (BR) DSS	$I_D = 10$ mA, $V_{GS} = 0$ V	40	_	_	V
Drain-source breakdown voltage		V (BR) DSX	$I_D = 10$ mA, $V_{GS} = -20$ V	25	_	_	
Gate threshold v	oltage	V _{th}	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA}$	1.1	_	2.3	V
Drain-source ON	raciatanaa	Des (a)	$V_{GS} = 4.5 \text{ V}, I_D = 3.3 \text{ A}$	_	27	35	mo
Diain-source On	-resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 3.3 A	_	22	27	mΩ
Forward transfer	admittance	Y _{fs}	$V_{DS} = 10 \text{ V}, I_{D} = 3.3 \text{ A}$	7	14	_	S
Input capacitance	е	C _{iss}		_	650	_	
Reverse transfer	Reverse transfer capacitance		V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz		55	_	pF
Output capacitan	Output capacitance			_	240	_	
	Rise time	t _r	V_{GS} 10 V $D = 3.3 A$ $O = 0 V_{OUT}$ $C = 0 V_{OUT}$	_	3	_	ns
Cusitahin a tina a	Turn-on time	t _{on}		_	9	_	
Switching time	Fall time	t _f		_	2	_	
	Turn-off time	t _{off}	Duty ≦ 1%, t _W = 10 μs	_	18	_	
Total gate charge (gate-source plus gate-drain)		0	$V_{DD} \simeq 32 \text{ V}, V_{GS} = 10 \text{V}, I_D = 6.5 \text{A}$		11	_	nC
		Qg	$V_{DD} \simeq 32 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 6.5 \text{A}$	_	6.2	_	
Gate-source charge 1		Q _{gs1}	$V_{DD} \simeq 32 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 6.5 \text{A}$		2.1		
Gate-drain ("Mille	Gate-drain ("Miller") charge			_	2.7	_	
Gate switch char	ge	Q _{SW}		_	3.5		

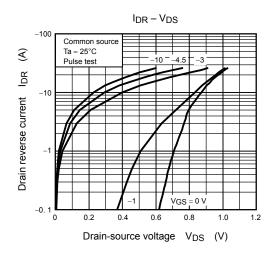

Source-Drain Ratings and Characteristics (Ta = 25°C)

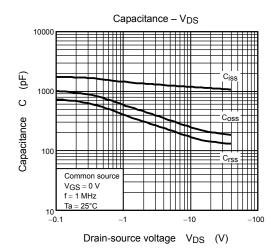

Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	_	_	_	26	Α
Forward voltage (diode)		V _{DSF}	$I_{DR} = 6.5 \text{ A}, V_{GS} = 0 \text{ V}$		_	-1.2	V

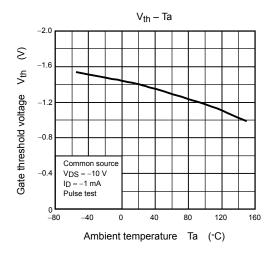

P-Channel

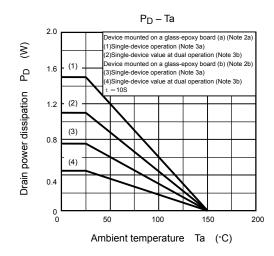


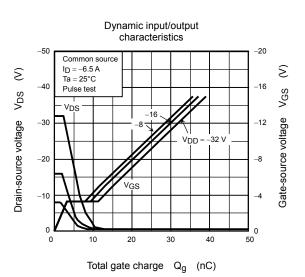


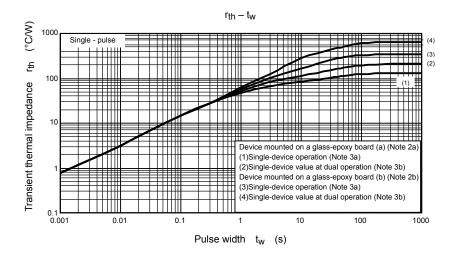


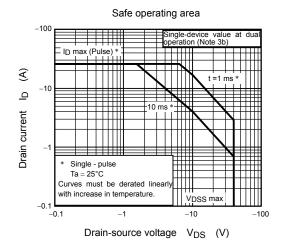


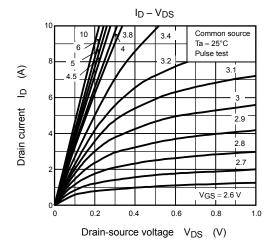


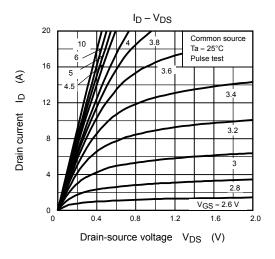

P-Channel

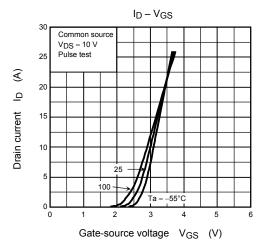


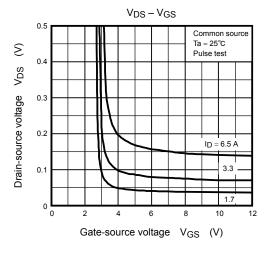


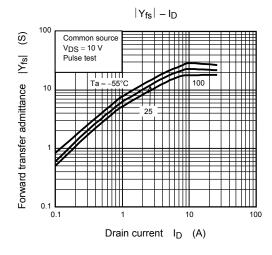




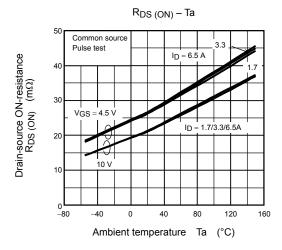

P-Channel

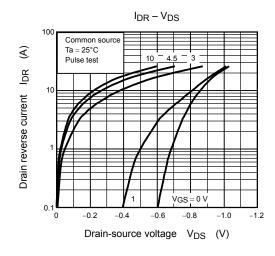


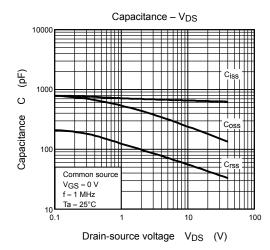


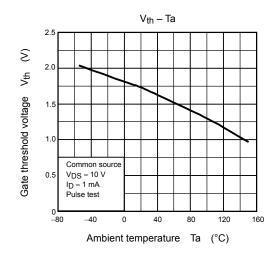

N-Channel

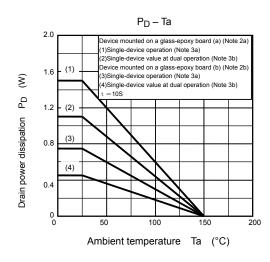


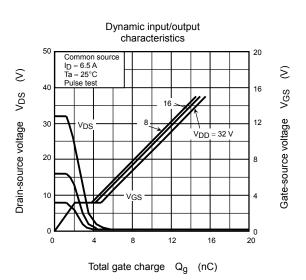


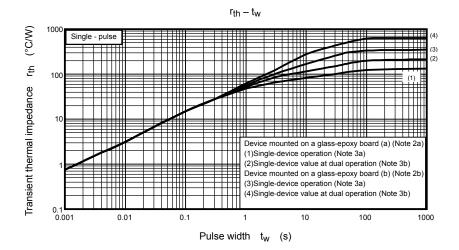


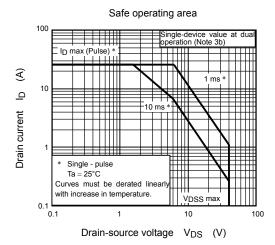





N-Channel







N-Channel

10

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.