## UAA1041B

## Automotive Direction Indicator

This device was designed for use in conjunction with a relay in automotive applications. It is also applicable for other warning lamps such as "handbrake ON," etc.

- Defective Lamp Detection
- Overvoltage Protection
- Short Circuit Detection and Relay Shutdown to Prevent Risk of Fire
- Reverse Battery Connection Protection
- Integrated Suppression Clamp Diode

Figure 1. Typical Automotive System


L1: 1.2 W, warning light handbrake ON
L2, L3, L4, L5: 21 W, turn signals

| $\mathrm{R} 1=75 \mathrm{k}$ | $\mathrm{R}=30 \mathrm{~m} \Omega$ |
| :--- | :--- |
| $\mathrm{R} 2=3.3 \mathrm{k}$ | $\mathrm{C} 1=5.6 \mu \mathrm{~F}$ |
| $\mathrm{R} 3=220 \Omega$ | $\mathrm{C} 2=0.047 \mu \mathrm{~F}$ |

## AUTOMOTIVE DIRECTION INDICATOR

SEMICONDUCTOR TECHNICAL DATA


## PIN CONNECTIONS



ORDERING INFORMATION

| Device | Operating <br> Temperature Range | Package |
| :---: | :---: | :---: |
| UAA1041BD | $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+100^{\circ} \mathrm{C}$ | SO-8 |
| UAA1041B |  | Plastic DIP |

## UAA1041B

MAXIMUM RATINGS

| Rating | Pin | Value | Unit |
| :--- | :---: | :---: | :---: |
| Current: Continuous/Pulse ${ }^{*}$ | 1 | $+150 /+500$ | mA |
|  |  | $-35 /-500$ |  |
|  | 2 | $\pm 350 / 1900$ |  |
|  | 3 | $\pm 300 / 1400$ |  |
| Junction Temperature | 8 | $\pm 25 / 50$ |  |
| Operating Ambient Temperature Range | $\mathrm{T}_{\mathrm{J}}$ | 150 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | -40 to +100 | ${ }^{\circ} \mathrm{C}$ |  |
| Thermal Resistance, Junction-to-Ambient | $\mathrm{R}_{\text {AJA }}$ | 100 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ (Typ) |

* One pulse with an exponential decay and with a time constant of 500 ms .

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{1}=25^{\circ} \mathrm{C}\right)$

| Characteristics | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Battery Voltage Range (normal operation) | $\mathrm{V}_{\mathrm{B}}$ | 8.0 | - | 18 | V |
| Overvoltage Detector Threshold $\quad\left(V_{\text {Pin2 }}-\mathrm{V}_{\text {Pin1 }}\right)$ | $\mathrm{D}_{\mathrm{th}}(\mathrm{OV})$ | 19 | 20.2 | 21.5 | V |
| Clamping Voltage $\quad\left(\mathrm{V}_{\text {Pin2 }} \mathrm{V}^{\text {Pin1 }}\right.$ ) | $\mathrm{V}_{\text {IK }}$ | 29 | 31.5 | 34 | V |
| Short Circuit Detector Threshold $\quad\left(\mathrm{V}_{\text {Pin2 }} \mathrm{V}^{-\mathrm{V}_{\text {Pin7 }}}\right)$ | $\mathrm{D}_{\mathrm{th}}(\mathrm{SC})$ | 0.63 | 0.7 | 0.77 | V |
| Output Voltage ( $\left.1_{\text {relay }}=-250 \mathrm{~mA}\right) \quad\left(\mathrm{V}_{\text {Pin2 }}-\mathrm{V}_{\text {Pin3 }}\right)$ | $\mathrm{V}_{\mathrm{O}}$ | - | - | 1.5 | V |
| Starter Resistance $\mathrm{R}_{\text {St }}=\mathrm{R}_{2}+\mathrm{R}_{\text {Lamp }}$ | $\mathrm{R}_{\text {st }}$ | - | - | 3.6 | $k \Omega \dagger$ |
| Oscillator Constant (normal operation) | Kn | 1.4 | 1.5 | 1.6 | - |
| Temperature Coefficient of Kn | Kn | - | $-1.5 \times 10^{-3}$ | - | $1 /{ }^{\circ} \mathrm{C}$ |
| Duty Cycle (normal operation) | - | 45 | 50 | 55 | \% |
| Oscillator Constant - (1 lamp defect of 21 W ) | $\mathrm{K}_{\mathrm{F}}$ | 0.63 | 0.68 | 0.73 | - |
| Duty Cycle (1 lamp defect of 21 W) | - | 35 | 40 | 45 | \% |
| Oscillator Constant | $\begin{aligned} & \text { K1 } \\ & \text { K2 } \\ & \text { K3 } \end{aligned}$ | $\begin{gathered} \hline 0.167 \\ 0.25 \\ 0.126 \end{gathered}$ | $\begin{aligned} & \hline 0.18 \\ & 0.27 \\ & 0.13 \end{aligned}$ | $\begin{gathered} \hline 0.193 \\ 0.29 \\ 0.14 \end{gathered}$ | - |
| $\begin{aligned} & \text { Current Consumption (relay off) } \\ & \begin{aligned} \text { Pin 1; at } \mathrm{V}_{\text {Pin2 }}-\mathrm{V}_{\text {Pin1 }} & =8.0 \mathrm{~V} \\ & =13.5 \mathrm{~V} \\ & =18 \mathrm{~V} \end{aligned} \end{aligned}$ | IcC | $\stackrel{-}{-2.5}$ | $\begin{aligned} & -0.9 \\ & -1.6 \\ & -2.2 \end{aligned}$ | $\begin{gathered} - \\ -1.0 \end{gathered}$ | mA |
| $\begin{aligned} & \text { Current Consumption (relay on) } \\ & \text { Pin 1; at } \mathrm{V}_{\text {Pin2 }}-\mathrm{V}_{\text {Pin1 }}=8.0 \mathrm{~V} \\ &=13.5 \mathrm{~V} \\ &=18 \mathrm{~V} \end{aligned}$ | - | - | $\begin{aligned} & -3.8 \\ & -5.6 \\ & -6.9 \end{aligned}$ | - | mA |
|  | $\begin{aligned} & \mathrm{V}_{\text {Pin2 }}-\mathrm{V}_{\text {Pin7 }} \\ & \mathrm{V}_{\text {Pin2 }} \mathrm{V}_{\text {Pin7 }} \\ & \mathrm{V}_{\text {Pin2 }} \mathrm{V}_{\text {Pin }} \end{aligned}$ | $\overline{79}$ | $\begin{gathered} \hline 68 \\ 85.3 \\ 100 \end{gathered}$ | - - - | mV |

† See Note 1 of Application Information

## UAA1041B <br> CIRCUIT DESCRIPTION

The circuit is designed to drive the direction indicator flasher relay. Figure 2 shows the typical system configuration with the external components. It consists of a network (R1, C 1 ) to determine the oscillator frequency, shunt resistor (RS) to detect defective bulbs and short circuits in the system, and two current limiting resistors $\left(\mathrm{R}_{2} / \mathrm{R}_{3}\right)$ to protect the IC against load dump transients. The circuit can be used either with or without short circuit detection, and features overvoltage, defective lamp and short circuit detection.

The lightbulbs L2, L3, L4, L5 are the turn signal indicators with the dashboard-light L6. When switch S1 is closed, after a time delay of $\mathrm{t}_{1}$ (in our example $\mathrm{t}_{1}=75 \mathrm{~ms}$ ), the relay will be actuated. The corresponding lightbulbs (L2, L3 or L4, L5) will flash at the oscillator frequency, independent of the battery voltage of 8.0 V to 18 V . The flashing cycle stops and the circuit is reset to the initial position when switch S 1 is open.

## Overvoltage Detection

Senses the battery voltage. When this voltage exceeds 20.2 V (this is the case when two batteries are connected in series), the relay will be turned off to protect the lightbulbs.

## Lightbulb Defect Detector

Senses the current through the shunt resistor Rs. When one of the lightbulbs is defective, the failure is indicated by doubling the flashing frequency.

## Short Circuit Detector

Detects excessive current ( $I_{\text {sh }}>25 \mathrm{~A}$ ) flowing in the shunt resistor RS. The detection takes place after a time delay of t3 ( $\mathrm{t} 3=55 \mathrm{~ms}$ ). In this case, the relay will be turned off. The circuit is reset by switching S1 to the off position.

## Operation with Short Circuit Detection

Pin 6 has to be left open and a capacitor $\mathrm{C}_{2}$ has to be connected between Pin 1 and Pin 2.

## Operation without Short Circuit Detection

Pin 6 has to be connected to Pin 2, and the use of capacitor $\mathrm{C}_{2}$ is not necessary. The circuit can also be used for other warning flashers. In this example, when the handbrake is engaged, it is signaled by the light (L1).

Figure 2. Typical System Configuration


$$
\begin{array}{ll}
\mathrm{R} 1=75 \mathrm{k} \Omega & \text { Relay-Coil Resistance } \\
\mathrm{R} 2=3.3 \mathrm{k} \Omega & \text { Range } 60 \Omega \text { to } 800 \Omega \\
\mathrm{R} 3=220 \Omega & \\
\mathrm{RS}=30 \mathrm{~m} \Omega & \text { Note: Per text connect } \\
\text { Wire Resistor } & \text { jumper JU-1 bypass } \\
\mathrm{C} 1=5.6 \mu \mathrm{~F} & \text { short circuit detector } \\
\mathrm{C} 2=0.047 \mu \mathrm{~F} & \mathrm{C} 2 \text { may be deleted also. }
\end{array}
$$

## APPLICATION INFORMATION

1. The flashing cycle is started by closing S1. The switch position is sensedacross resistor $R_{2}$ and $R_{\text {Lamp }}$ by Input 8.

$$
R_{S t}=R_{2}+R_{\text {Lamp }}
$$

The condition for the start is: $\mathrm{R}_{\mathrm{St}}<3.6 \mathrm{k} \Omega$.
For correct operation, leakage resistance from Pin 8 to ground must be greater than $5.6 \mathrm{k} \Omega$.
2. Flashing frequency: $f_{n}=\frac{1}{R_{1} C_{1} K_{n}}$
3. Flashing frequency in the case of one defective lightbulb of 21 W :

$$
\mathrm{f}_{\mathrm{F}}=\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1} \mathrm{~K}_{\mathrm{F}}} \quad K_{\mathrm{n}}=2,2 \mathrm{~K}_{\mathrm{F}}
$$

4. $t_{1}$ : delay at the moment when S 1 is closed and first flash $t_{1}=K_{1} R_{1} C$
5. $t_{2}$ : defective lightbulb detection delay $\mathrm{t}_{2}=\mathrm{K}_{2} \mathrm{R}_{1} \mathrm{C}_{1}$
6. $\mathrm{t}_{3}$ : short circuit detection delay $\mathrm{t}_{3}=\mathrm{K}_{1} \mathrm{R}_{1} \mathrm{C}_{1}$

In the case of short circuit-it is assumed that the voltage ( $\mathrm{V}_{\text {Pin2 }}-\mathrm{V}_{\text {Pin1 }}$ ) $\geq 8.0 \mathrm{~V}$. Therelay will beturnedoffafterdelay t3. The circuit is reset by switching S 1 to the off position. The capacitor C2 is not obligatory when the short circuit
7. detector is not used. In this case Pin 6 has to be connected to Pin 2.
When overvoltage is sensed ( $V_{\text {Pin2 }}-V_{\text {Pin1 }}$ ) the relay is
8. turned off to protect the relay and the lightbulbs against excessive currents.

## UAA1041B

## OUTLINE DIMENSIONS



Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

