CSM_K3HB-R_DS_E_7_1

Digital Rotary Pulse Meter Capable of 50 kHz Measurements

 Measures High-speed Pulses at 50 kHz.
 Provides high-speed pulse measurements up to 50 kHz of rotary encoder or ON/OFF pulse signals and can perform rotating measurement of high-speed rotating objects.

Note: No-voltage contacts of up to 30 Hz are supported.

 Six Measurement Operations Including Rotation (rpm)/ Circumferential Speed, Ratio, and Cumulative
 One Rotary Pulse Meter has 6 rotary pulse measurement functions to support a variety of pulse measurement applications. Select the best function for your application from the following: Rotation (rpm)/ circumferential speed/instantaneous flowrate (value proportional to frequency), absolute ratio, error ratio, error, flow rate ratio, and passing speed (value inversely proportional to frequency).

Refer to Safety Precautions for All Digital Panel Meters.

Model Number Structure

■ Model Number Legend

Base Units and Optional Boards can be ordered individually or as sets.

<u> Duoc Oi</u>	1110	<u>'</u>
K3HB-R		
KOIID II	-	

Rase Units

1. Input Sensor Code

NB: NPN input/voltage pulse input

PB: PNP input

5. Supply Voltage

100-240 VAC:100 to 240 VAC 24 VAC/VDC: 24 VAC/VDC

Optional Boards

Sensor Power Supply/Output Boards

K33-□

Relay/Transistor Output Boards

K34-□

Event Input Boards

K35-<u></u>
₄

Base Units with Optional Boards

K3HB-R	}□.	-			
	1	2	3	4	5

2. Sensor Power Supply/Output Type Code

None: None

CPA: Relay output (PASS: SPDT) + Sensor power supply

(12 VDC±10%, 80 mA) (See note 1.)

L1A: Linear current output (0 to 20 or 4 to 20 mA DC) + Sensor power supply

(12 VDC±10%, 80 mA) (See note 2.)

L2A: Linear voltage output (0 to 5, 1 to 5, or 0 to 10 VDC) + Sensor power supply

(12 VDC±10%, 80 mA) (See note 2.)

A: Sensor power supply (12 VDC ±10%, 80 mA) FLK1A: Communications (RS-232C) + Sensor power supply

(12 VDC±10%, 80 mA) (See note 2.)

FLK3A: Communications (RS-485) + Sensor power supply (12 VDC±10%, 80 mA) (See note 2.)

3. Relay/Transistor Output Type Code

None: None

C1: Relay contact (H/L: SPDT each)

C2: Relay contact (HH/H/LL/L: SPST-NO each)

T1: Transistor (NPN open collector: HH/H/PASS/L/LL)

T2: Transistor (PNP open collector: HH/H/PASS/L/LL)

BCD*: BCD output + transistor output (NPN open collector: HH/H/PASS/L/LL)

DRT: DeviceNet (See note 2.)

* A Special BCD Output Cable (sold separately) is required.

4. Event Input Type Code

None: None

1: 5 inputs (M3 terminal blocks), NPN open collector

2: 8 inputs (10-pin MIL connector), NPN open collector

3: 5 inputs (M3 terminal blocks), PNP open collector

4: 8 inputs (10-pin MIL connector), PNP open collector

Note: 1. CPA can be combined with relay outputs only.

2. Only one of the following can be used by each Digital Indicator: RS-232C/RS-485 communications, BCD communications, or DeviceNet communications.

Accessories (Sold Separately)

K32-DICN: Special Cable (for event inputs with 8-pin connector)

K32-BCD: Special BCD Output Cable

Rubber Packing

Model	
K32-P1	

Note: Rubber packing is provided with the Controller.

Specifications

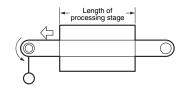
■ Ratings

Supply voltage 1		100 to 240 VAC, 24 VAC/VDC, DeviceNet power supply: 24 VDC	
Allowable powerange	er supply voltage	85% to 110% of the rated power supply voltage, DeviceNet power supply: 11 to 25 VDC	
Power consump (See note 1.)	otion	100 to 240 VAC: 18 VA max. (max. load) 24 VAC/DC: 11 VA/7 W max. (max. load)	
Current consum	nption	DeviceNet power supply: 50 mA max. (24 VDC)	
Input		No-voltage contact, voltage pulse, open collector	
External power	supply	12 VDC ±10%, 80 mA (models with external power supply only)	
Event inputs (See note 2.)	Startup compensation timer input	NPN open collector or no-voltage contact signal ON residual voltage: 2 V max.	
	Hold input	ON current at 0 Ω: 4 mA max.	
	Reset input	Max. applied voltage: 30 VDC max. OFF leakage current: 0.1 mA max.	
	Bank input	our our maximum	
Output ratings (depends on	Relay output	250 VAC, 30 VDC, 5 A (resistive load) Mechanical life expectancy: 5,000,000 operations, Electrical life expectancy: 100,000 operations	
the model) Transistor output		Maximum load voltage: 24 VDC, Maximum load current: 50 mA, Leakage current: 100 μA max.	
Linear output		Linear output 0 to 20 mA DC, 4 to 20 mA DC: Load: 500 Ω max, Resolution: Approx. 10,000, Output error: ±0.5% FS Linear output 0 to 5 VDC, 1 to 5 VDC, 0 to 10 VDC: Load: 5 kΩ max, Resolution: Approx. 10,000, Output error: ±0.5% FS (1 V or less: ±0.15 V; no output for 0 V or less)	
Display method		Negative LCD (backlit LED) display 7-segment digital display (Character height: PV: 14.2 mm (green/red); SV: 4.9 mm (green))	
Main functions		Scaling function, measurement operation selection, averaging, output hysteresis, output OFF delay, output test, teaching, display value selection, display color selection, key protection, bank selection, display refresh period, maximum/minimum hold, reset	
Ambient operating temperature		−10 to 55°C (with no icing or condensation)	
Ambient operating humidity		25% to 85%	
Storage temper	ature	-25 to 65°C (with no icing or condensation)	
Altitude		2,000 m max.	
Accessories		Watertight packing, 2 fixtures, terminal cover, unit stickers, instruction manual. DeviceNet models also include a DeviceNet connector (Hirose HR31-5.08P-5SC(01)) and crimp terminals (Hirose HR31-SC-121) (See note 3.)	

Note: 1. DC power supply models require a control power supply capacity of approximately 1 A per Unit when power is turned ON. Particular attention is required when using two or more DC power supply models. The OMRON S8VS-series DC Power Supply Unit is recommended.

- 2. PNP input types are also available.
- 3. For K3HB-series DeviceNet models, use only the DeviceNet Connector included with the product. The crimp terminals provided are for Thin Cables.

■ Characteristics


Display range		-19,999 to 99,999	
Measurement accur	асу	Functions F1, F6: ±0.006% rgd ±1 digit (for voltage pulse/open collector sensors)	
(at 23±5°C)		Functions F2 to F5: ±0.02% rgd ±1 digit (for voltage pulse/open collector sensors)	
Measurement range		Functions F1 to F6: 0.5 mHz to 50 kHz (for voltage pulse/open collector sensors)	
Input signals		Contact input (dry contact input) (30-Hz max. with ON/OFF pulse width of 15 ms min.)	
		No contact voltage pulse (50-KHz max. with ON/OFF pulse width of 9 μs min.; ON voltage: 4.5 to 30 V; OFF voltage: –30 to 2 V; input impedance: 10 kΩ)	
		Open collector (50-KHz max. with ON/OFF pulse width of 9 μs min.)	
Connectable senso	rs	ON residual voltage: 3 V max.	
		OFF leakage current: 1.5 mA max. Load current: Must have a switching capacity of 20 mA or higher.	
		Must be able to properly switch load currents of 5 mA or less.	
Comparative outputime (transistor out		Functions F1 to F6: 100 ms max. (time until the comparative output is made when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%.)	
Linear output respo	nse time	Functions F1 to F6: 110 ms max. (time until the final analog output value is reached when there is a forced sudden change in the input signal from 15% to 95% or 95% to 15%.)	
Insulation resistance	e	20 MΩ min. (at 500 VDC)	
Dielectric strength		2,300 VAC for 1 min between external terminals and case	
Noise immunity		100 to 240 VAC models: ±1,500 V at power supply terminals in normal or common mode (waveform with 1-ns rising edge and pulse width of 1 μs/100 ns)	
		24 VAC/VDC models: ±1,500 V at power supply terminals in normal or common mode (waveform with 1-ns rising edge and pulse width of 1 μs/100 ns)	
Vibration resistance	<u> </u>	Frequency: 10 to 55 Hz; Acceleration: 50 m/s², 10 sweeps of 5 min each in X, Y, and Z directions	
Shock resistance		150 m/s² (100 m/s² for relay outputs) 3 times each in 3 axes, 6 directions	
Weight		Approx. 300 g (Base Unit only)	
Degree of	Front panel	Conforms to NEMA 4X for indoor use (equivalent to IP66)	
protection	Rear case	IP20	
	Terminals	IP00 + finger protection (VDE0106/100)	
Memory protection		EEPROM (non-volatile memory) Number of rewrites: 100,000	
Applicable standard	is	UL61010C-1, CSA C22.2 No. 1010.1 (evaluated by UL) EN61010-1 (IEC61010-1): Pollution degree 2/Overvoltage category II EN61326: 1997, A1: 1998, A2: 2001	
EMC		EMI: EN61326 industrial applications	
		Electromagnetic radiation interference CISPR 11 Group 1, Class A	
		Terminal interference voltage CISPR 11 Group 1, Class A	
		EMS: EN61326 industrial applications	
		Electrostatic Discharge Immunity EN61000-4-2: 4 kV (contact), 8 kV (in air)	
		Radiated Electromagnetic Field Immunity EN61000-4-3: 10 V/m 1 kHz sine wave amplitude modulation (80 MHz to 1 GHz, 1.4 to 2 GHz)	
		Electrical Fast Transient/Burst Noise Immunity EN61000-4-4: 2 kV (power line), 1 kV (I/O signal line)	
		Surge Immunity EN61000-4-5: 1 kV with line (power line), 2 kV with ground (power line)	
		Conducted Disturbance Immunity EN61000-4-6: 3 V (0.15 to 80 MHz)	
		Power Frequency Magnetic Immunity EN61000-4-8: 30 A/m (50 Hz) continuous time	
		Voltage Dips and Interruptions Immunity EN61000-4-11: 0.5 cycle, 0°/180°, 100% (rated voltage)	

Operation

■ Functions (Operating Modes)

F1 to F6

Functions F1 to F6 provide rpm/circumferential speed and other calculation displays by measuring continuous pulses (frequencies). Example

Function name	Function No.
Rpm/circumferential speed	F!
Absolute ratio	F2
Error ratio	F3
Rotational difference	FY
Flow rate ratio	F5
Passing time	F6

F1: Displays rotation (rpm) or circumferential speed for one input.

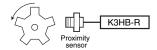
F2 to F5: Displays the calculation result for two rotation (rpm) speeds.

F6: Displays the passing time calculated from the circumferential speed and the length of the processing stage for one input.

The basic principle used by the Digital Indicator to calculate the rotation speed (rpm) display is to count the ON/OFF time (T) for input sensor or other device inputs using the internal system clock, and then automatically calculate the frequency. This frequency (f) is multiplied by 60 and displayed as the rotation (rpm) speed.

Input sensor or other input pulse ON/OFF time (T) = $\frac{1}{T}$ Frequency (f) = $\frac{1}{T}$

- Rotation speed (rpm) = $f \times 60$
- Circumferential speed = Roll circumference × Rotation speed (rpm)
- Passing time=
 Length of processing stage
 Circumferential speed


These calculations are automatically made internally and displayed whenever any input pulse is received.

Function		Oper	ation	Operation image (application)
F1 Rpm/ circumfer- ential speed/	rotation (rpm) the input freq) or circumfere uency.	ut A and displays the ntial speed proportional to $\alpha \text{fa: Input frequency (Hz)}$	Measuring roller winding speed Measuring motor speed (for product testing)
İnstanta-	Calculation	Display unit	Prescale value (α)	\$89988
neous flowrate	Rotation	rpm	1/N	88988 12
nowrate	speed	rps	1/60 N	OK/NG judgment
	Frequency	Hz	1/60	Judgment
	(of input pulse)	kHz	1/60000	
	Circumfer-	mm/s	1000 πd/60 N	
	ential speed	cm/s	100 πd/60 N	
	speed	m/s	πd/60 N	
		m/min	πd/N	
		km/h	0.06 πd/N	
	Instanta-	ℓ/min	Check the output	
	neous flowrate	<i>l</i> /h	specifications of the input device and calculate the prescale value from the following equation: Display value $D = fa \times 60$ $\times \alpha$	
	N = Pulses pe	er rotation		
			per rotation (m)	
F2	Multiples inpu	ut B divided by	input A $(\frac{B}{A})$ by 100 and	Measuring the speed ratio between two rollers
Absolute ratio		atio as a perce	_	PASS L L L Warning

Function	Operation	Operation image (application)
F3 Error ratio	Multiplies the error between input A and input B $(\frac{B}{A}-1)$ by 100 and displays the ratio as a percentage (%). Display unit: %	Measuring the line speed error ratio between two conveyors Communications output (remote monitoring) To computer
F4 Rotational difference	Displays the difference between input A and input B (B – A) as the rotation (rpm) speed error or circumferential speed error. (Display unit: rpm, rps, rph, Hz, kHz, mm/s, m/s m/min, km/h l/min, l/h, etc.	Measuring the rotation (rpm)/circumferential speed error (absolute error) between two conveyors HH H PASS L Warning
F5 Flow rate ratio	Displays the flow rate ratio of B from inputs A and B $(\frac{B}{A+B})$ as a ratio (%). Display unit: %	Monitoring liquid mixture flow rate ratio Linear output Recording meter
F6 Passing time	The passing time for the desired distance is displayed by measuring the frequency of input A. Passing time (s) = $1/fa \times \alpha$. fa: Input frequency (Hz) Set the prescale value for the desired display unit using the following table for reference. Calculation Display unit Prescale value (α) Passing time s L/($\pi d/N$) N = Pulses per rotation πd = Circumferential length per rotation (m) L = Length of process (m) Display unit: Seconds (s), minutes (min), hours/minutes/seconds (h.min.s), minutes/seconds/tenths of seconds (min.s.1/10s), etc.	Displaying the passing time for a conveyor line Distance Distance Distance Distance Distance H PASS U Warning output

■ What Is Prescaling?

To make calculations using the input pulse to display rotation (rpm) or circumferential speed, the number of pulses per rotation or the length of the circumference must be multiplied by a certain coefficient. This coefficient is called the prescale value.

Rotation speed (rpm) = $f \times 60 \times a$

f: Input pulse frequency (No. of pulses per second)

a: Prescale value

If there are 5 pulses per rotation, then

 $a = 1/5 (= 0.2 = 2 \times 10^{-1})$

and an accurate rotation speed (rpm) can be calculated.

The actual setting is X = 2.0000 (mantissa) and $Y = 10^{-1}$ (exponent).

■ What Is the Auto-zero Function?

(Set this function before using the Digital Indicator.)

If a function **F** *I* to **FS** is set, the frequency can be force-set to zero if there is no input pulse for a set period. This period is called the auto-zero time. Set the auto-zero time to slightly longer than the longest input pulse interval. (The display will not easily return to zero if the auto-zero time is too long or left at the default setting.)

Time Unit Settings

Setting	Meaning
SCAL	Prescale value menu setting
ŭŗu	Minute display
H.AA.SS	h.mm.ss display
กัก.55.d	mm.ss.d display (d = tenths of a second)

Note: Time unit can be set only when passing time (F6) is selected.

Input Type Setting

	NO: Voltage pulse high	NC: Voltage pulse low
No-contact or voltage pulse input	00	0 1
Contact	10	11

Note: Set to 10 or 11 when there is a large variation in the display. The largest measurement range is 30 Hz.

Common Specifications

■ Event Input Ratings

K3HB-R	S-TMR, HOLD, RESET, BANK1, BANK2, BANK4		
Contact	ON: 1 k Ω max., OFF: 100 k Ω min.		
No-contact	ON residual voltage: 2 V max.		
	OFF leakage current: 0.1 mA max.		
	Load current: 4 mA max.		
	Maximum applied voltage: 30 VDC max.		

■ Output Ratings

Contact Output

Item	Resistive loads (250 VAC, cosφ=1; 30 VDC, L/R=0 ms)	Inductive loads (250 VAC, closed circuit, cos∳=0.4; 30 VDC, L/R=7 ms)
Rated load	5 A at 250 VAC 5 A at 30 VDC	1 A at 250 VAC 1 A at 30 VDC
Mechanical life expectancy	5,000,000 operations	
Electrical life expectancy	100,000 operations	

Transistor Outputs

Maximum load voltage	
Maximum load current	50 mA
Leakage current	100 μA max.

Linear Output

Item	Outputs	0 to 20 mA	4 to 20 mA	0 to 5 V	1 to 5 V	0 to 10 V
Allowable load in	npedance	500 Ω max.		5 kΩ min.		
Resolution		Approx. 10,000				
Output error		±0.5% FS		±0.5% FS (±0.15 V for 1	V or less and no	output for 0 V)

Serial Communications Output

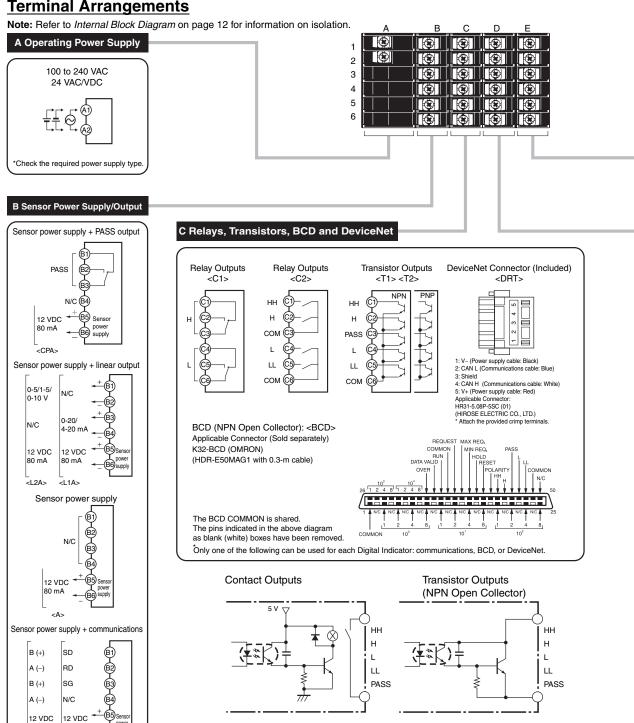
Item Type	RS-232C, RS-485
Communications method	Half duplex
Synchronization method	Start-stop synchronization (asynchronous)
Baud rate	9600/19200/38400 bps
Transmission code	ASCII
Data length	7 bits or 8 bits
Stop bit length	2 bits or 1 bit
Error detection	Vertical parity and FCS
Parity check	Odd, even

BCD Output I/O Ratings (Input Signal Logic: Negative)

I/O sig	ınal name	Item		Rating		
Inputs REQUEST HOLD MAX		Input signal		No-voltage contact input		
		Input current for no-voltage input		10 mA		
	MIN RESET	Signal level	ON voltage	1.5 V max.		
	_		OFF voltage	3 V min.		
Outputs DATA POLARITY OVER DATA VALID RUN HH H PASS L LL	Maximum load voltage		24 VDC			
	Maximum load current		10 mA			
	RUN	Leakage current		100 μA max.		
		Maximum Io	24 VDC			
	L	Maximum lo	Maximum load current			
	LL	Leakage cu	100 μA max.			

Refer to the *K3HB Communications User's Manual* (Cat. No. N129) for details on serial and DeviceNet communications.

DeviceNet Communications


Communications protocol		Conforms to DeviceNe	Conforms to DeviceNet					
Supported	Remote I/O	Master-Slave connection (polling, bit-strobe, COS, cyclic)						
communications	communications	Conforms to DeviceNe	et communications sta	ındards.				
	I/O allocations	Allocate any I/O data using the Configurator.						
		Allocate any data, such as DeviceNet-specific parameters and variable area for Digital Indicators.						
		Input area: 2 blocks, 60 words max.						
		Output area: 1 block, 29 words max. (The first word in the area is always allocated for the Output Execution Enabled Flags.)						
	Message	Explicit message com	Explicit message communications					
	communications	CompoWay/F communications commands can be executed (using explicit message communications)						
Connection meth	ods	Combination of multi-drop and T-branch connections (for trunk and drop lines)						
Baud rate		DeviceNet: 500, 250, or 125 Kbps (automatic follow-up)						
Communications	media	Special 5-wire cable (2 signal lines, 2 power supply lines, 1 shield line)						
Communications distance		Baud rate	Network length (max.)	Drop line length (max.)	Total drop line length (max.)			
		500 Kbps	100 m max. (100 m max.)	6 m max. 39 m max.				
			100 m max. (250 m max.)	6 m max.	78 m max.			
		125 Kbps	100 m max. (500 m max.)	6 m max. 156 m max.				
		The values in parenthes	ses are for Thick Cable.					
Communications	power supply	24-VDC DeviceNet pow	er supply					
Allowable voltage	e fluctuation range	11 to 25-VDC DeviceNet power supply						
Current consump	otion	50 mA max. (24 VDC)						
Maximum numbe	r of nodes	64 (DeviceNet Configurator is counted as one node when connected.)						
Maximum numbe	r of slaves	63						
Error control che	cks	CRC errors						
DeviceNet power	supply	Supplied from DeviceNet communications connector						

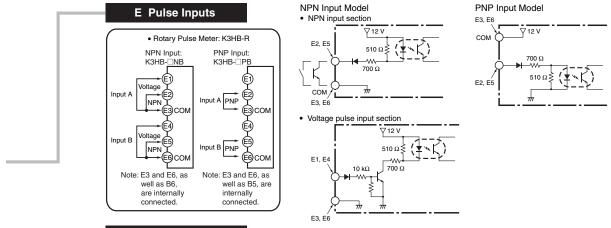
K3HB-R

Connections

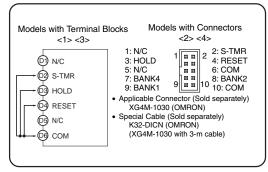
■ External Connection Diagrams

Terminal Arrangements

Safety Standards Conformance

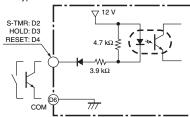

- Always use a EN/IEC-compliant power supply with reinforced insulation or double insulation for the DeviceNet power supply.
- The product must be used indoors for the above applicable standards to apply.

80 mA

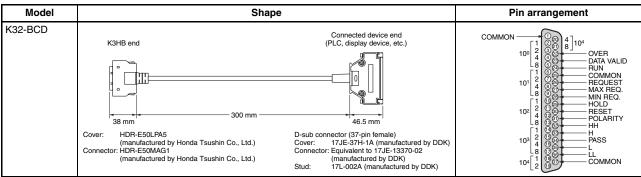

RS-485 <FLK3A>

80 mA

RS-232C <FLK1A>



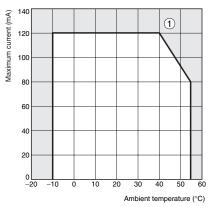
D Event Inputs



- Use terminal pin D6 as the common terminal.
- Use NPN open collector or no-voltage contacts for event input.

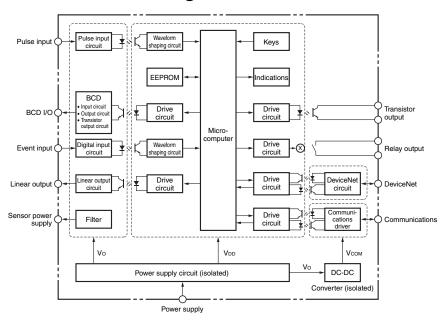
PNP types are also available.

BCD Output Cable


Note: The BCD Output Cable has a D-sub plug. Cover: 17JE-37H-1A (manufactured by DDK); Connector: equivalent to 17JE-23370-02 (D1) (manufactured by DDK)

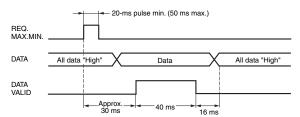
Special Cable (for Event Inputs with 8-pin Connector)

Model	Appearance		Wiring		
K32-DICN	9 10 1 2 3,000 mm Cable marking (3 m)	•	Pin No. 1 2 3 4 5 6 7 8 9 10	Signal name N/C S-TMR HOLD RESET N/C COM BANK4 BANK2 BANK1 COM	

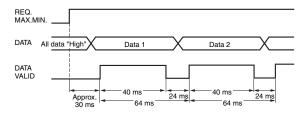

■ Derating Curve for Sensor Power Supply (Reference Values)

For 12V

- **Note: 1.** The above values were obtained under test conditions with the standard mounting. The derating curve will vary with the mounting conditions, so be sure to adjust accordingly.
 - 2. Internal components may be deteriorated or damaged. Do not use the Digital Indicator outside of the derating range (i.e., do not use it in the area labeled ①, above).

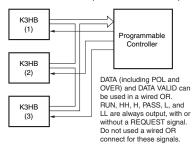

■ Internal Block Diagram

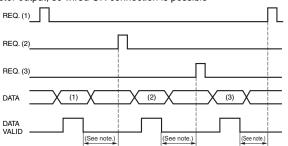
■ BCD Output Timing Chart


A REQUEST signal from a Programmable Controller or other external device is required to read BCD data.

Single Sampling Data Output

The data is set in approximately 30 ms from the rising edge of the REQUEST signal and the DATA VALID signal is output. When reading the data from a Programmable Controller, start reading the data when the DATA VALID signal turns ON. The DATA VALID signal will turn OFF 40 ms later, and the data will turn OFF 16 ms after that.

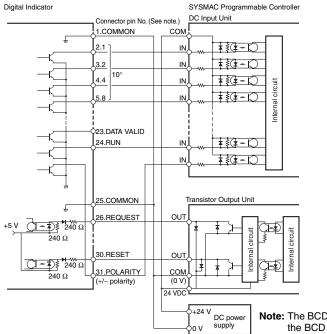

Continuous Data Output

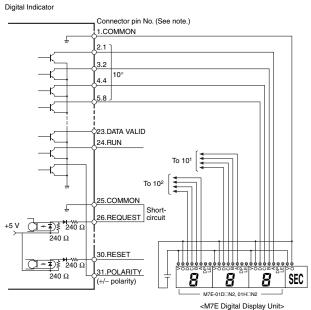


Measurement data is output every 64 ms while the REQUEST signal remains ON.

Note: If HOLD is executed when switching between data 1 and data 2, either data 1 or data 2 is output depending on the timing of the hold signal. The data will not go LOW.

• The K3HB BCD output model has an open collector output, so wired OR connection is possible

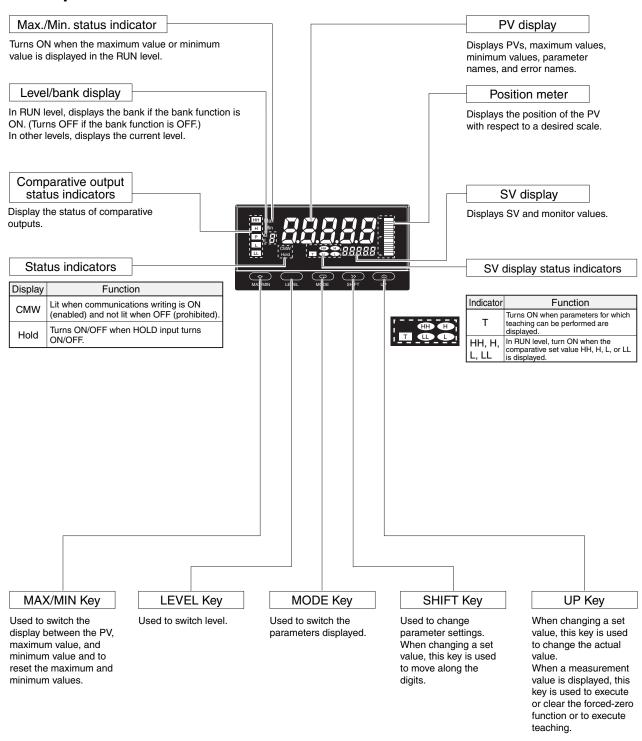




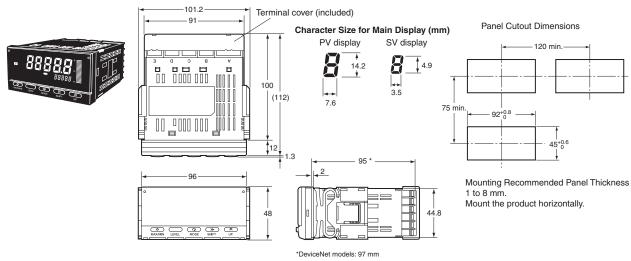
Note: Leave 20 ms min. between DATA VALID turning OFF and the REQUEST signal.

Programmable Controller Connection Example

Display Unit Connection Example



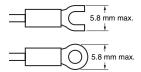
Note: The BCD output connector pin number is the D-sub connector pin number when the BCD Output Cable (sold separately) is connected. This number differs from the pin number for the Digital Indicator narrow pitch connector (manufactured by Honda Tsushin Kogyo Co., Ltd.).


Refer to the following User's Manual for application precautions and other information required when using the Digital Indicator: K3HB-R/P/C Digital Indicator User's Manual (Cat. No. N136)

The manual can be downloaded from the following site in PDF format: OMRON Industrial Web http://www.fa.omron.co.jp

■ Component Names and Functions

■ Dimensions


Terminal: M3, Terminal Cover: Accessory

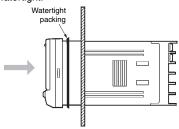
Wiring Precautions

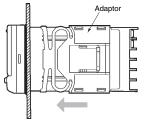
- For terminal blocks, use the crimp terminals suitable for M3 screws.
- Tighten the terminal screws to the recommended tightening torque of approx. 0.5 N·m.
- To prevent inductive noise, separate the wiring for signal lines from that for power lines.

Wiring

• Use the crimp terminals suitable for M3 screws shown below.

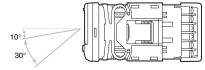
Unit Stickers (included)


- No unit stickers are attached to the Digital Indicator.
- Select the appropriate units from the unit sticker sheets provided.

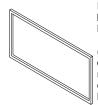

Note: For measurements for commercial purposes, be sure to use the unit required by any applicable laws or regulations.

Mounting Method

- 1. Insert the K3HB into the mounting cutout in the panel.
- Insert watertight packing around the Unit to make the mounting watertight.



Insert the adapter into the grooves on the left and right sides of the rear case and push until it reaches the panel and is fixed in place.


LCD Field of Vision

The K3HB is designed to have the best visibility at the angles shown in the following diagram.

Rubber Packing (Sold Separately)

K32-P1

If the rubber packing is lost or damaged, it can be ordered using the following model number: K32-P1.

(Depending on the operating environment, deterioration, contraction, or hardening of the rubber packing may occur and so, in order to ensure the level of waterproofing specified in NEMA4, periodic replacement is recommended.)

Note: Rubber packing is provided with the Controller.

Main Functions

■ Main Functions and Features

Measurement

Function

The K3HB-R has the following six functions for receiving and displaying input pulses.

FUnE

F1: Rotation (rpm)/circumferential speed

F2: Absolute ratio

F3: Error ratio

F4: Rotational difference

F5: Flow rate ratio

F6: Passing time

The K3HB-P has the following six functions for receiving and displaying input pulses.

F1: Passing speed

F2: Cycle

F3: Time difference

F4: Time band

F5: Measuring length

F6: Interval

The K3HB-C has the following three functions for receiving and displaying input pulses.

F1: Individual inputs

F2: Phase differential inputs

F3: Pulse counting input

Filters

Average Processing Rub-t, Rub-ก

Average processing of input signals with extreme changes or noise smooths out the display and makes control stable.

Input Types In-tR, In-tb

Specify the types of sensor connected to input A and input B.

Input Compensation

Auto-zero Times

REIR, REIB

The frequency is forced to zero if there is no pulse input for a set period.

Key Operations

Teaching

The present measurement value can be used as a scaling value.

Key Protection

Key protection restricts level or parameter changes using the keys to prevent unintentional key operations and malfunctions.

Outputs

Comparative Output Pattern

Standard, zone, and level comparative output patterns can be selected for comparative outputs.

Hysteresis Hys

Prevents comparative outputs from chattering when the measurement value fluctuates slightly near the set value.

Output Refresh Stop 5-5EP

Holds the output status when a comparative result output other than PASS turns ON.

PASS Output Change PRSS

Comparative results other than PASS and error signals can be output from the PASS output terminal.

Output OFF Delay

Delays turning OFF comparatives for a set period. This can be used to provide sufficient time to read the comparative output ON status when the comparative result changes at short intervals.

Shot Output 5Hot

Turns ON the comparative output for a specific time.

Output Logic all t-n

Reverses the output logic of comparative results.

Startup Compensation Timer 5-60

Measurements can be stopped for a set time using an external input.

Output Test

Output operation can be checked without using actual input signals by using the keys to set a test measurement value.

Linear Outputs LSELL, LSELL, LSELL

A current or voltage proportional to the change in the measurement value can be output.

Standby Sequence 54dby

The comparison outputs can be kept OFF until the measurement value enters the PASS range.

Display

Display Value Selection d. 5P

The display value can be set to the present value, the maximum value, or the minimum value.

Display Color Selection

The present value display color can be set to green or red. The color of the present value can also be switched according to the comparative output.

Display Refresh Period d. EF

When the input changes rapidly, the display refresh period can be lengthened to control flickering and make the display easier to read.

Position Meter Post-L, Post-L, Post-L

The present measurement value can be displayed as a position in relation to the scaling width on a 20-gradation position meter.

Prescale P5.Rū, P5.RY, P5.bū, P5.bY

The input signal can be converted and displayed as any value.

Comparative Set Value Display 50.05P

Select whether or not to display the comparative value during operation.

Display auto-return CE

Automatically returns the display to RUN level when there are no key operations (e.g., max./min. switching, bank settings using keys).

Other

Max./Min. Hold

Holds the maximum and minimum measurement values.

Bank Selection boy-[

Switch between 8 comparative value banks using the keys on the front panel or external inputs. A set of set comparative values can be selected as a group.

Bank Copy [6P4

Any bank settings can be copied to all banks.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

In the interest of product improvement, specifications are subject to change without notice.

Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES. EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- · Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.

It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

2009.11

In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation Industrial Automation Company

http://www.ia.omron.com/

(c)Copyright OMRON Corporation 2009 All Right Reserved.