
SCRs

DESCRIPTION

The XL1225/ML1225 silicon controlled rectifiers are high performance planner diffused PNPN devices. These parts are intended for low cost high volume applications.

1: GATE 2: ANODE 3: CATHODE

ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise specified)

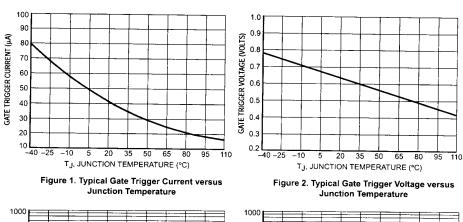
PARAMETERS	PART NO.	SYMBOL	TEST CONDITION	MIN.	MAX.	UNITS
Repetitive Peak Off-State Voltage	XL1225	VDRM	Tj=40 to 125°C (RGK =1k Ω)	400		V
	ML1225	VDRM		300		
On-State Current		IT(RMS)	Tc=40°C	8.0		Α
Average On-State Current		IT(AV)	Half Cycle=180°, Tc=40°C	0.5		Α
Peak Reverse Gate Voltage		VGRM	IGR=10uA	1		V
Peak Gate Current		IGM	10us Max.	0.1		Α
Gate Dissipation		PG(AV)	20ms Max.	100		mW
Operating Temperature		Tj		-40	125	°C
Storage Temperature		Tstg		-40	125	°C
Soldering Temperature		TSLD	1.6mm from case 10s Max.		250	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
Off state leakage current	IDRM	VDRM(RGK=1KΩ), Tj=125°C		0.1	mA
Off state leakage current	IDRM	VDRM(RGK=1KΩ), Tj=25°C		1.0	μΑ
On state voltage	VT	AT IT=0.4A		1.4	V
		AT IT=0.8A		2.2	
On state threshold voltage	VT(TO)	Tj=125°C		0.95	V
On state slops resistance	Rt	Tj=125°C		600	m
Gate trigger current	IGT	VD=7V		200	μА
Gate trigger voltage	VGT	VD=7V		8.0	V
Holding current	IH	RGK=1KΩ		5	mA
Latching current	IL	RGK=1KΩ		6	mA

UTC UNISONIC TECHNOLOGIES CO. LTD

QW-R301-014,A


UTC XL/ML1225

SCR

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
Critical rate of voltage rise	DV/DT	VD=0.67*VDRM(RGK=1KΩ),			V/μs
		Tj=125°C			
Critical rate of current rise	DV/DT	IG=10mA, dIG/dt=0.1A/μs,			A/μs
		Tj=125°C			
Gate controlled delay time	TGD	IG=10mA, dIG/dt=0.1A/μs,		2.2	μS
Commutated turn-off time	TG	Tj=85°C, VD=0.67*VDRM,		200	μS
		VR=35V, IT=IT(AV)			
Thermal resistance junc. to case	Rθ JC				K/W
Thermal resistance junc. to case	Rθ JA				K/W

CLASSIFICATION OF IGT

	- 01					
RANK	В	С	AA	AB	AC	AD
RANGE	50-100սA	100-200μΑ	8-15µA	15-20µA	20-25uA	25-50սA

HOLDING CURRENT (µA) 20 35 50 80 TJ, JUNCTION TEMPERATURE (°C)

Figure 3. Typical Holding Current versus Junction Temperature

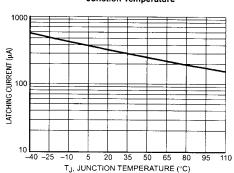


Figure 4. Typical Latching Current versus Junction Temperature

UTC UNISONIC TECHNOLOGIES CO. LTD

2 QW-R301-014,A

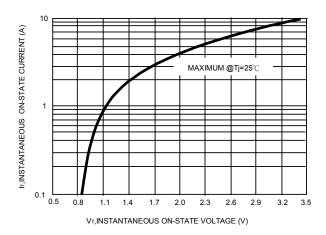


Figure 5. Typical On-State Characteristics

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC UNISONIC TECHNOLOGIES CO. LTD

QW-R301-014,A

3