

ML12509 ML12511 ML12513 MECL PLL Components Dual Modulus Prescaler

Legacy Device: Motorola 12509, 12511, 12513

These devices are two-modulus prescalers which will divide by 5 and 6, 8 and 9, respectively. A MECL-to-MTTL translator is provided to interface directly with the Motorola MC12014 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

- ML12509 480 MHz (÷5/6), ML12511 550 MHz (÷8/9), ML12513 550 MHz (÷10/11)
- MECL to MTTL Translator on Chip
- MECL and MTTL Enable Inputs
- 5.0 or -5.2 V Operation*
- Buffered Clock Input Series Input RC Typ, 20 Ω and 4.0 pF
- VBB Reference Voltage
- 310 mW (Typ)

* When using a 5.0 V supply, apply 5.0 V to Pin 1 (V_{CCO}), Pin 6 (MTTL V_{CC}), Pin 16 (V_{CC}), and ground Pin 8 (V_{EE}). When using -5.2 V supply, ground Pin 1 (V_{CCO}), Pin 6 (MTTL V_{CC}), and Pin 16 (V_{CC}) and apply -5.2 V to Pin 8 (V_{EE}). If the translator is not required, Pin 6 may be left open to conserve DC power drain.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
(Ratings above which device life ma	ay be impaired	(b	
Power Supply Voltage (V _{CC} = 0)	VEE	-8.0	Vdc
Input Voltage (V _{CC} = 0)	V _{in}	0 to V _{EE}	Vdc
Output Source Current Continuous Surge	lO	<50 <100	mAdc
Storage Temperature Range	T _{stg}	-65 to 175	°C
(Recommended Maximum Ratings	above which	performance ma	av be

(Recommended Maximum Ratings above which performance may be degraded)

Operating Temperature Range	TA	–55 to 125	°C
DC Fan–Out (Note 1) (Gates and Flip–Flops)	n	70	_

NOTES: 1. AC fan-out is limited by desired system performance.

Downloaded from Elcodis.com electronic components distributor

						Te	st Voltag	je Values	s (Volts)							Test Cui	rrent Value	es (mA)
ture	HIN	VIL	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	Vcc	VIH min	VIL min	VILL	VEEL	VCCA	<u>_</u>	IoL	HOI
ç	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
° C	+ 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
ů	+ 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4

10
•••
1
\mathbf{U}
_
_
20
0,
~
<u> </u>
111
_
1
\mathbf{U}
4
ш
4
_
T
4.5
()
\mathbf{C}
$\mathbf{}$
n n
()
$\mathbf{\nabla}$
111
ш

ML12509, ML12511, ML12513

				Lin	lits			Units			TES	ST VOLTA	GE APPI	LIED TO	I SNId	BELOW		
		+ 25	°C	+ 12	5 °C	- 55	ပိ	-		inouts	reference	are for	DIL pack	cage, ch	leck Pir	n Assignr	nents	
	Functional Parameters:	Subgr	oup 1	Subgr	2 dno	Subgr	oup 3				-	Output Lo	ad = 100) Ω to +	3.0 V			
		Min	Мах	Min	Max	Min	Max		VIH	VIL	VIHA/B	VILA/B	Vcc	VEE	CP1	IOH/OL	<u> </u>	P.U.T.
VOH1 C	Output Voltage High	4.03	4.22	4.135	4.37	3.88	4.12	>	9, 10	9, 10	11 - 13	11 - 13	1, 16	ω	15			2, 3 (Note 2)
VOH2 C	Dutput Voltage High	2.70	4.5	3.00	4.5	2.40	4.5	>			2	4	9	80		40I		2
VOL1 C	Output Voltage Low	3.11	3.44	3.14	3.515	3.04	3.405	>	9, 10	9, 10	11 - 13	11 - 13	1, 16	8	15			2, 3 (Note 2)
VOL2 C	Jutput Voltage Low	0.10	0.80	0.10	0.66	0.10	1.00	>			4	2	9	80		loL 7		7
VOHA C	Output Voltage High	4.01	4.5	4.115	4.5	3.86	4.5	>		9, 10	11 - 13	11 - 13	1, 16	80	15			2, 3 (Note 3)
VOLA C	Output Voltage Low	3.11	3.46	3.14	3.535	3.04	3.425	>	12	9, 10	11 - 13	11 - 13	1, 16	ø	15			2, 3 (Note 3)
VBB1 S	Reference Bias Supply Voltage	3.67	3.87					>					1, 16	ω			14	14
los	Dutput Short Sircuit Current	- 65	- 20	- 65	- 20	- 65	- 20	ШA		7	2	4	9	ω				7
ICC1 P	ower Supply Current	- 80		- 80		- 88		mA					1, 16	ø				8
ICC2 P	ower Supply Current		5.2		5.2		5.2	ШA			4	5	9	80				9

Power Supply Voltage = 5.0 V, Power Supply Voltage = - 5.2 V is guaranteed but not tester
See Sequence Table 1.
See Sequence Table 2.

Page 3 of 12

Page	4	of	12
i ugo	-	01	-

Downloaded from Elcodis.com electronic components distributor

HARACTERISTICS
ELECTRICAL C

Test Current Values (mA)

Ю

Р

_

VCCA

VEEL

VILL

VILmin

VIHmin

VCC

VEE

VILT

VIHT

VILB

VIHB

VILA

VIHA

Temperature

fest

+ 0.5 Ϋ́F

+ 2.4 ۲IH

Test Voltage Values (Volts)

	TA = 2!	5 °C + 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	
TA = -55 °C +2.4 +0.5 +3.745 +3.54 +3.64 +2.0 +0.6 +1.02 +0.165 -3.0 -3.0 +2.0 -0.25 +16 -0.4 Symbol Parameter Parameter +25 °C 11015 Innit Innit Nin	TA = 12	5 °C + 2.4	+ 0.5	+ 4.0	+ 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	
SymbolParameterParameterLimitsLimitsInitsTEST VOLTAGE APPLIED TO PINS BELOWFunctional parameters: $+25 \circ C$ $+125 \circ C$ $-55 \circ C$ $pinouts referenced are for DIL package, check Pin AssignmentsFunctionalparameters:Subgroup 1Subgroup 2Subgroup 3Pinouts referenced are for DIL package, check Pin AssignmentsINH1Input Current High2.06.02.06.41.76.0\mu AINH2Input Current High2.06.02.06.41.76.0\mu A9,1011-13,151,16811,12,13,15INH3Input Current High2.06.02.06.41.76.0m A4.56.684.5$	TA = -5	5 °C + 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0.	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4	
SymbolParameterLimitsLimitsInitsTEST VOLTAGE APPLIED TO PINS BELOWFunctional Parameters: $+25 ^{\circ}$ C $+125 ^{\circ}$ C $-55 ^{\circ}$ C $-55 ^{\circ}$ C $-55 ^{\circ}$ CFunctional Parameters: $+25 ^{\circ}$ C $+125 ^{\circ}$ C $-55 ^{\circ}$ C $-55 ^{\circ}$ C $-55 ^{\circ}$ CFunctional Parameters: $-125 ^{\circ}$ C $-125 ^{\circ}$ C $-55 ^{\circ}$ C $-55 ^{\circ}$ C $-125 ^{\circ}$ CINH1Input Current High $-250 ^{\circ}$ C $-100 ^{\circ}$ Aub $V_{IL} ^{\circ}$ VIH $V_{IL} ^{\circ}$ VIHA/B $V_{ILA/B} ^{\circ}$ C $V_{EC} ^{\circ}$ CINH2Input Current High $2.0 6.0 2.0 6.4 1.7 6.0 mA$ $-4, 0 -4, 5 4, 5 6 8 -4, 5 -4, 5 6 8 -4, 5 -4, 5 -6 -8 -4, 5 -6 -8 -4 -5 -6 -8 -4 -5 -6 -6 -6 -6 -6 -6 -6$																	1	1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Symbol	Parar	meter			5	mits			nnin	S			TEST VOL	TAGE AP	PLIED 7	TO PINS E	RELOW		
Functional Parameters: Subgroup 1 Subgroup 2 Subgroup 3 Authout Load = 100 Ω to + 3.0 V INH1 Input Current High Z Z VIH VIL VIHA/B VILA/B VIC VEE P.U.T. INH2 Input Current High Z 6.0 Z.0 6.0 Z.0 6.0 MA MA MA MI MA MIL I1, 12, 15, 15 11, 12, 13, 15 11, 12,		1		4	25 °C	+	25 °C	Ľ.	55 °C			Pinout	ts referer	nced are fu	or DIL pa	sckage, c	check Pin	Assianm	ents	
Investigie Min Max Min Max Min Max Min Max VIH VIH VIHA/B VILA/B VCC VEE P.U.T. INH1 Input Current High 1 250 400 µA 9,10 11-13,15 1,16 8 11,12,13,1 INH2 Input Current High 2.0 6.0 6.4 1.7 6.0 µA 9,10 11-13,15 6 8 11,12,13,1 INH2 Input Current High 2.0 6.4 1.7 6.0 mA 9,10 11-13,15 6 8 11,12,13,1 INH3 Input Current High 1.0 3.0 6.0 mA 7 9,10 11-13,15 6 8 11,12,13,13		Parame	onal sters:	Subg	Jroup 1	Subç	froup 2	Sub	group 3	1				Output	Load = 1	00 Ω to	+ 3.0 V	2		
INH1 Input Current High 250 400 μA 400 μA 9,10 11-13,15 1,16 8 11,12,13,1 INH2 Input Current High 2.0 6.0 2.0 6.4 1.7 6.0 mA 9,16 14,5 4,5 6 8 11,12,13,13 INH3 Input Current High 1.0 3.0 1.7 6.0 mA 9,10 11-13,15 6 8 11,12,13,13				Min	Max	Min	Max	Min	Max		>	н	VIL	VIHA/B	VILAB	VCC		/EE	P.U.T.	
INH2 Input Current High 2.0 6.0 2.0 6.4 1.7 6.0 mA 4,5 4,5 6 8 4,5 INH3 Input Current High 1.0 3.0 1.0 3.6 0.7 3.0 mA 4 5 6 8 4,5	1 HNI	Input Curre	nt High		250		400		400	ЧЩ		5	1, 10 1	1 - 13, 15		1, 16		8	11, 12, 13,	15
Inbut Current High 1.0 3.6 0.7 3.0 mA 4 5 6 8 5	INH2	Input Curre.	nt High	2.0	6.0	2.0	6.4	1.7	6.0	μA				4,5	4,5	9		8	4,5	
	INH3	Input Curre.	nt High	1.0	3.0	1.0	3.6	0.7	3.0	₩A				4	5	9	-	8	2	

1. Power Supply Voltage = 5.0 V, Power Supply Voltage = - 5.2 V is guaranteed but not tested. a 100 Ω resistor to + 3.0 V.

4

11, 12, 13, 9, 10

<u>6</u>

8, 15, 11 œ

1, 16 1, 16

9, 10

00

1, 16

0 . б

Am

- 1.6 - 10

9, 10

ЧA HA

100

100

100

Input Current High Input Current Low Input Current Low

INH4

INI LINI

- 10 - 1.6

- 10 - 1.6

Test						Tec	st Voltag	e Values	(Volts)							Test Cur	rent Value	(WW) se
Temperature	HIN	VIL	VIHA	VILA	VIHB	VILB	VIHT	VILT	VEE	VCC	VIHmin	VILmin	VILL	VEEL	VCCA	Ŀ	loL	но
TA = 25 °C	+ 2.4	+ 0.5	+ 3.895	+ 3.525	+ 4.22	+ 3.11	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.15	+ 0.215	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
TA = 125 °C	+ 2.4	+ 0.5	+ 4.0	. + 3.6	+ 4.37	+ 3.14	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.27	+ 0.26	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4
T _A = -55 °C	+ 2.4	+ 0.5	+ 3.745	+ 3.5	+ 4.12	+ 3.04	+ 2.0	+ 0.8	0.0	+ 5.0	+ 1.02	+ 0.165	- 3.0	- 3.0	+ 2.0	- 0.25	+ 16	- 0.4

Ś
Ö
E
Ś
~
Ш
F
Ö
آ
C
◄
Т.
O
G
ž
Ŧ
六
2
3
S

Symbol	Parameter			Lim	lits			Units		TE.	ST VOLTAG	E APPLIE	D TO PINS	BELOW	
		+ 25	ပို	+ 12	5 °C	- 55	ç		Pinot	uts referenc	ed are for L	olL packag	le, check Pi	n Assignm	nents
	Functional Parameters:	Subgr	6 dno	Subgro	ot duc	Subgro	11 duc				Output Loa	id = 100 Ω	to + 3.0 V		
	(Fig. 5)	Min	Мах	Min	Мах	Min	Мах		VILL	VILmin	VIN	Vout	VCCA	VEEL	P.U.T.
tPHH	Propagation Delay (15+2+)		8.1		9.4		8.1	su	9, 10	11 - 13	15	2, 3	1, 6, 16	8	2, 3
tpHH	Propagation Delay (5+ 7+)		8.1		9.4		8.1	SU	9, 10	11 - 13	15	2, 3	1, 6, 16	8	2, 3
tPLL	Propagation Delay (15+2-)		7.5		8.7		7.5	su	9, 10	11 - 13	15	2, 3	1, 6, 16	8	7
tPLL	Propagation Delay (5- 7-)		6.5		7.6		6.5	su	9, 10	11 - 13	15	2, 3	1, 6, 16	ø	7
		Min	Typ	Min	Мах	Min	Мах		VILL	VILmin	VIN	Vout	VCCA	VEEL	P.U.T.
tSetup 1	Setup Time MECL	5.0		5.0		5.0		ns	9, 10	11 - 13	9 - 13		1, 6, 16	œ	9 - 13
tSetup 2	Setup Time MTTL	5.0		5.0		5.0		SU	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
tRel 1	Release Time MECL	5.0		5.0		5.0		SU	9, 10	11 - 13	9 - 13		1, 6, 16	80	9 - 13
tRel 2	Release Time MTTL	5.0		5.0		5.0		SU	9, 10	11 - 13	9 - 13		1, 6, 16	8	9 - 13
		Min	Typ	Min	Typ	Min	Typ		۸۱۲۲	VILmin	VIN	VOUT	VCCA	VEEL	P.U.T.
fmax +5/6	(Fig. 6) Toggle Frequency ML12509	480	520	420	440	420	500	MHz			15	N	1, 6, 16	8 - 13	N
÷8/9	ML12511	500	550	500	550	500	550	MHz	4 A		15	2	1, 6, 16	8 - 13	2
÷10/11	ML12513	550	600	500	540	500	600	ZHM			15	5	1, 6, 16	8 - 13	2

Figure 5. AC Test Circuit

- NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
 - 2. In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.

Clock Input VIHmax VILmin

3. In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 V. Test procedures are shown for only one gate. The other gates are tested in the same manner.

Figure 4. Setup and Release Time Waveforms

Downloaded from Elcodis.com electronic components distributor

ΟV_{CC} = 2.0 V V_{out to} Scope 0.1 μF 5.0 μF オ 16 ¢ T 13 E1 0 2 Vin 12 Q (To Scope) -0-11 E2 Q V_{EE} O E3 0 10 E4 9 E5 0 3 -0 Q 0.1 μF 15 С 0 0 16 1.0 k 14 V_{BB} -0 1 0.1 μF 9 8 0.1 μF V_{EE} = -3.0 V

Figure 6. Maximum Frequency Test Circuit

Unused output connected to a 50 Ω resistor to ground

DIVIDE BY 9

The primary application of these devices is as a highspeed variable modulus prescaler in the divide by N section of a phase-locked loop synthesizer used as the local oscillator of two-way radios. The theory and advantages of variable modulus prescaling, along with typical applications, are covered in Motorola's "Electronic Tuning Address Systems" (SG72).

Proper VHF termination techniques should be followed when the clock is separated from the prescaler by any appreciable distance. In their basic form, these devices will divide by 5/6, 8/9, or 10/11. Division by 5, 8, or 10 occurs when any one or all of the five gate inputs E1 through E5 are high. Division by 6, 9, or 11 occurs when all inputs E1 through E5 are low. (Unconnected MTTL inputs are normally high, unconnected MECL inputs are normally low). With the addition of extra parts, many different division configurations may be obtained (20/21, 40/41, 50/51, 100/101, etc.) A few of the many configurations are shown below, only for the ML12513

OUTLINE DIMENSIONS

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.