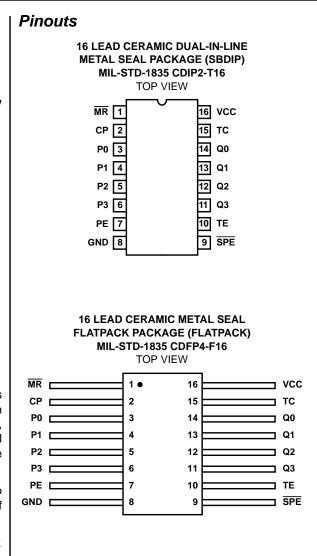


HCTS163MS

Radiation Hardened Synchronous Counter

September 1995

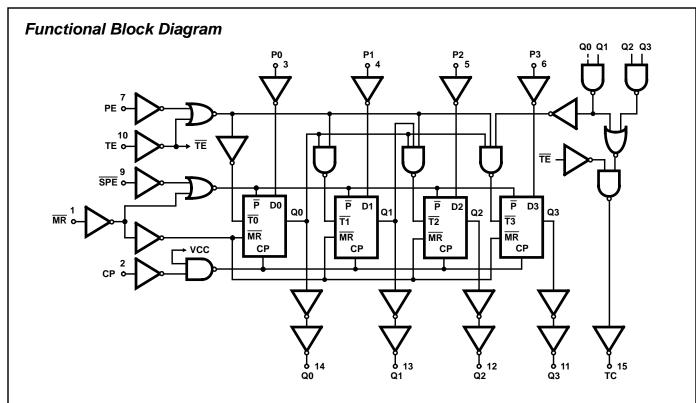
Features


- 3 Micron Radiation Hardened CMOS SOS
- Total Dose 200K RAD (Si)
- SEP Effective LET No Upsets: >100 MEV-cm²/mg
- Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/Bit-Day (Typ)
- Dose Rate Survivability: >1 x 10¹² RAD (Si)/s
- Dose Rate Upset: >10¹⁰ RAD (Si)/s 20ns Pulse
- Latch-Up Free Under Any Conditions
- Fanout (Over Temperature Range)
- Standard Outputs 10 LSTTL Loads
- Military Temperature Range: -55°C to +125°C
- Significant Power Reduction Compared to LSTTL ICs
- DC Operating Voltage Range: 4.5V to 5.5V
- LSTTL Input Compatibility
 - VIL = 0.8V Max
 - VIH = VCC/2 Min
- Input Current Levels Ii \leq 5µA at VOL, VOH

Description

The Intersil HCTS163MS is a Radiation Hardened synchronous presettable counter that feature look-ahead carry logic for use in high speed counting application. HCTS163MS is a binary counter, and is reset synchronously with the clock. Counting and parallel presetting are both accomplished synchronously with the negative to positive transition of the clock.

The HCTS163MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family.


The HCTS163MS is supplied in a 16 lead Ceramic flatpack (K suffix) or a SBDIP Package (D suffix).

Ordering Information

PART NUMBER	TEMPERATURE RANGE	SCREENING LEVEL	PACKAGE
HCTS163DMSR	-55°C to +125°C	Intersil Class S Equivalent	16 Lead SBDIP
HCTS163KMSR	-55°C to +125°C	Intersil Class S Equivalent	16 Lead Ceramic Flatpack
HCTS163D/Sample	+25°C	Sample	16 Lead SBDIP
HCTS163K/Sample	+25°C	Sample	16 Lead Ceramic Flatpack
HCTS163HMSR	+25°C	Die	Die

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999

TRUTH TABLE

		INPUTS						OUTPUTS	
OPERATING MODE	MR	СР	PE	TE	SPE	PN	QN	тс	
Reset (clear)	I		х	х	х	Х	L	L	
Parallel Load	h (Note 3)		х	х	I	I	L	L	
	h (Note 3)		х	х	I	h	Н	(Note 1)	
Count	h (Note 3)		h	h	h (Note 3)	х	Count	(Note 1)	
Inhibit	h (Note 3)	х	I (Note 2)	х	h (Note 3)	х	Qn	(Note 1)	
	h (Note 3)	х	х	I (Note 2)	h (Note 3)	х	Qn	L	

H = HIGH Voltage Level

L = LOW Voltage Level

h = HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition

I = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition

X = Immaterial

q = Lower case letter indicate the state of the referenced output prior to the LOW-to-HIGH clock transition

____ = LOW-to-HIGH clock transition

NOTES:

1. The TC output is HIGH when TE is HIGH and the counter is at terminal count (HLLH for 162 and HHHH for 163)

2. The HIGH-to-LOW transition of PE or TE on the 54/74163 and 54/74160 should only occur while CP is high for conventional operation

3. The LOW-to-HIGH transition of SPE or MR on the 54/74163 should only occur while CP is high for conventional operation

Absolute Maximum Ratings

Reliability Information

Thermal Resistance SBDIP Package	θ _{JA} 73°C/W	θ _{JC} 24°C/W
Ceramic Flatpack Package	114ºC/W	29°C/W
Maximum Package Power Dissipation at +12	5°C Ambien	t
SBDIP Package		0.68W
Ceramic Flatpack Package		0.44W
If device power exceeds package dissipation	capability, pr	rovide heat
sinking or derate linearly at the following rate	:	
SBDIP Package	1	3.7mW/ ^o C
Ceramic Flatpack Package		8.8mW/ ^o C

CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation.

Operating Conditions

Supply Voltage (VCC)	+4.5V to +5.5V
Input Rise and Fall Times at 4.5 VCC (TR, TF)	500ns Max
Operating Temperature Range (T _A)	55°C to +125°C

Input Low Voltage (VIL)	0.0V to 0.8V
Input High Voltage (VIH)	VCC/2 to VCC

			GROUP		LIM	IITS	
PARAMETER	SYMBOL	(NOTE 1) CONDITIONS	A SUB- GROUPS	TEMPERATURE	MIN	МАХ	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	40	μA
			2, 3	+125°C, -55°C	-	750	μΑ
Output Current (Sink)	IOL	VCC = 4.5V, VIH = 4.5V, VOUT = 0.4V, VIL = 0V	1	+25°C	4.8	-	mA
		VOOT = 0.4V, VIE = 0V	2, 3	+125°C, -55°C	4.0	-	mA
Output Current (Source)	ЮН	VCC = 4.5V, VIH = 4.5V,	1	+25°C	-4.8	-	mA
		VOUT = VCC - 0.4V, VIL = 0V VCC = 4.5V, VIH = 2.25V,	2, 3	+125°C, -55°C	-4.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V, VIH = 2.25V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
		VCC = 5.5V, VIH = 2.75V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V, VIH = 2.25V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
		VCC = 5.5V, VIH = 2.75V, IOH = -50µA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	±0.5	μA
Current			2, 3	+125°C, -55°C	-	±5.0	μA
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V (Note 2)	7, 8A, 8B	+25°C, +125°C, -55°C	-	-	-

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages referenced to device GND.

2. For functional tests, VO \ge 4.0V is recognized as a logic "1", and VO \le 0.5V is recognized as a logic "0".

		(NOTES 1, 2)	GROUP A SUB-		LIM	IITS		
PARAMETER	SYMBOL	CONDITIONS	GROUPS	TEMPERATURE	MIN	МАХ	UNITS	
CP to Qn	TPHL TPLH	VCC = 4.5V	9	+25°C	2	25	ns	
			10, 11	+125°C, -55°C	2	29	ns	
CP to TC	TPHL TPLH	VCC = 4.5V	9	+25°C	2	28	ns	
			10, 11	+125°C, -55°C	2	33	ns	
MR to Qn, TC	TPHL	VCC = 4.5V	9	+25°C	2	50	ns	
			10, 11	+125°C, -55°C	2	75	ns	
TE to TC	TPHL	VCC = 4.5V	9	+25°C	2	23	ns	
			10, 11	+125°C, -55°C	2	29	ns	

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500 Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTE 1)		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	МАХ	UNITS
Capacitance Power Dissipation	CPD	VCC = 5.0V, f = 1MHz	+25°C	-	78	pF
			+125°C, -55°C	-	176	pF
Input Capacitance	CIN	VCC = 5.0V, f = 1MHz	+25°C	-	10	pF
			+125°C	-	10	pF
Output Transition Time	TTHL TTLH	VCC = 4.5V	+25°C	-	15	ns
			+125°C	-	22	ns

NOTE:

1. The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics.

TABLE 4. D	OC POST RADIATION ELECTRIC	AL PERFORMANCE CHARACTERISTICS
------------	----------------------------	--------------------------------

		(NOTES 1.2)		200K RAD LIMITS		
PARAMETER	SYMBOL	(NOTES 1, 2) CONDITIONS	TEMPERATURE	MIN	МАХ	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	+25°C	-	0.75	mA
Output Current (Sink)	IOL	VCC = 4.5V, VIN = VCC or GND, VOUT = 0.4V	+25°C	4.0	-	mA
Output Current (Source)	ЮН	VCC = 4.5V, VIN = VCC or GND, VOUT = VCC -0.4V	+25°C	-4.0	-	mA

				200K LIN		
PARAMETER	SYMBOL	(NOTES 1, 2) CONDITIONS	TEMPERATURE	MIN	МАХ	
Output Voltage Low	VOL	VCC = 4.5V and 5.5V, VIH = VCC/2, VIL = 0.8V , IOL = 50 μA	+25°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V and 5.5V, VIH = VCC/2, VIL = 0.8V , IOH = -50μA	+25°C	VCC -0.1	-	V
Input Leakage Current	lin	VCC = 5.5V, VIN = VCC or GND	+25°C	-	±5	μA
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V, (Note 3)	+25°C	-	-	-
CP to Qn	TPHL TPLH	VCC = 4.5V	+25°C	2	29	ns
CP to TC	TPLH TPLH	VCC = 4.5V	+25°C	2	33	ns
MR to Qn, TC	TPHL	VCC = 4.5V	+25°C	2	75	ns
TE to TC	TPHL	VCC = 4.5V	+25°C	2	29	ns

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

NOTES:

1. All voltages referenced to device GND.

2. AC measurements assume RL = 500 Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

3. For functional tests VO \ge 4.0V is recognized as a logic "1", and VO \le 0.5V is recognized as a logic "0".

TABLE 5.	BURN-IN AND	OPERATING LIFE	TEST. DELTA	PARAMETERS (-	+25°C)
TABLE V.					120 0)

PARAMETER	GROUP B SUBGROUP	DELTA LIMIT
ICC	5	12μΑ
IOL/IOH	5	-15% of 0 Hour

Specifications HCTS163MS

TABLE 6. APPLICABLE SUBGROUPS

ICE GROUPS	METHOD	GROUP A SUBGROUPS	READ AND RECORD	
)	100%/5004	1, 7, 9	ICC, IOL/H	
rn-In)	100%/5004	1, 7, 9	ICC, IOL/H	
ırn-ln)	100%/5004	1, 7, 9	ICC, IOL/H	
	100%/5004	1, 7, 9, Deltas		
urn-In)	100%/5004	1, 7, 9		
	100%/5004	1, 7, 9, Deltas		
	100%/5004	2, 3, 8A, 8B, 10, 11		
Group A (Note 1)		1, 2, 3, 7, 8A, 8B, 9, 10, 11		
Subgroup B-5	Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11	
Subgroup B-6	Sample/5005	1, 7, 9		
•	Sample/5005	1, 7, 9		
	<u> </u>	a) 100%/5004 rn-ln) 100%/5004 urn-ln) 100%/5004 urn-ln) 100%/5004 urn-ln) 100%/5004 100%/5004 100%/5004 Sample/5005 Subgroup B-5 Sample/5005 Subgroup B-6 Sample/5005	n) 100%/5004 1, 7, 9 rm-ln) 100%/5004 1, 7, 9 urn-ln) 100%/5004 1, 7, 9 urn-ln) 100%/5004 1, 7, 9, Deltas urn-ln) 100%/5004 1, 7, 9 D00%/5004 1, 7, 9, Deltas urn-ln) 100%/5004 1, 7, 9, Deltas Urn-ln) 100%/5004 1, 7, 9, Deltas Subgroup B-5 Sample/5005 1, 2, 3, 7, 8A, 8B, 9, 10, 11 Subgroup B-6 Sample/5005 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	

NOTE:

1. Alternate group A testing in accordance with method 5005 of MIL-STD-883 may be exercised.

TABLE 7. TOTAL DOSE IRRADIATION

CONFORMANCE		TEST		READ AND RECORD	
GROUPS	METHOD	PRE RAD	POST RAD	PRE RAD	POST RAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4 (Note 1)

NOTE:

1. Except FN test which will be performed 100% Go/No-Go.

TABLE 8. STATIC AND DYNAMIC BURN-IN TEST CONNECTIONS

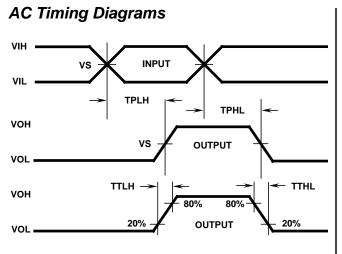
				OSCIL	LATOR
OPEN	GROUND	1/2 VCC = 3V \pm 0.5V	VCC = 6V \pm 0.5V	50kHz	25kHz
STATIC BURN-IN I TEST CONNECTIONS (Note 1)					
11 - 15	1 - 10	-	16	-	-
STATIC BURN-IN II TEST CONNECTIONS (Note 1)					
11 - 15	8	-	1 - 7, 9, 10, 16	-	-
DYNAMIC BURN-IN TEST CONNECTIONS (Note 2)					
-	4, 6, 8	11 - 15	1, 3, 5, 7, 9, 10, 16	2	-

NOTES:

1. Each pin except VCC and GND will have a resistor of $10K\Omega\pm5\%$ for static burn-in

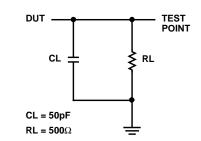
2. Each pin except VCC and GND will have a resistor of 1K $\!\Omega\pm5\%$ for dynamic burn-in

TABLE 9. IRRADIATION TEST CONNECTIONS


OPEN	GROUND	VCC = 5V \pm 0.5V
11 - 15	8	1 - 7, 9, 10, 16

NOTE: Each pin except VCC and GND will have a resistor of $47K\Omega \pm 5\%$ for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures.

Intersil Space Level Product Flow - 'MS'	
Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM)	100% Interim Electrical Test 1 (T1) 100% Delta Calculation (T0-T1)
GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects	100% Static Burn-In 2, Condition A or B, 24 hrs. min., +125°C min., Method 1015
100% Nondestructive Bond Pull, Method 2023	100% Interim Electrical Test 2 (T2)
Sample - Wire Bond Pull Monitor, Method 2011	100% Delta Calculation (T0-T2)
Sample - Die Shear Monitor, Method 2019 or 2027	100% PDA 1, Method 5004 (Notes 1and 2)
100% Internal Visual Inspection, Method 2010, Condition A	100% Dynamic Burn-In, Condition D, 240 hrs., +125°C or
100% Temperature Cycle, Method 1010, Condition C,	Equivalent, Method 1015
10 Cycles	100% Interim Electrical Test 3 (T3)
100% Constant Acceleration, Method 2001, Condition per Method 5004	100% Delta Calculation (T0-T3)
100% PIND, Method 2020, Condition A	100% PDA 2, Method 5004 (Note 2)
100% External Visual	100% Final Electrical Test
100% Serialization	100% Fine/Gross Leak, Method 1014
100% Initial Electrical Test (T0)	100% Radiographic, Method 2012 (Note 3)
100% Static Burn-In 1, Condition A or B, 24 hrs. min.,	100% External Visual, Method 2009
+125°C min., Method 1015	Sample - Group A, Method 5005 (Note 4)
	100% Data Package Generation (Note 5)
NOTES:	


1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1.

- 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7.
- 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004.
- 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005.
- 5. Data Package Contents:
 - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity).
 - Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage.
 - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil.
 - X-Ray report and film. Includes penetrometer measurements.
 - Screening, Electrical, and Group A attributes (Screening attributes begin after package seal).
 - Lot Serial Number Sheet (Good units serial number and lot number).
 - Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test.
 - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative.

AC VOLTAGE LEVELS				
PARAMETER	нстѕ	UNITS		
VCC	4.50	V		
VIH	3.00	V		
VS	1.30	V		
VIL	0	V		
GND	0	V		

AC Load Circuit

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd. Taiwan Limited 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029

Die Characteristics

DIE DIMENSIONS:

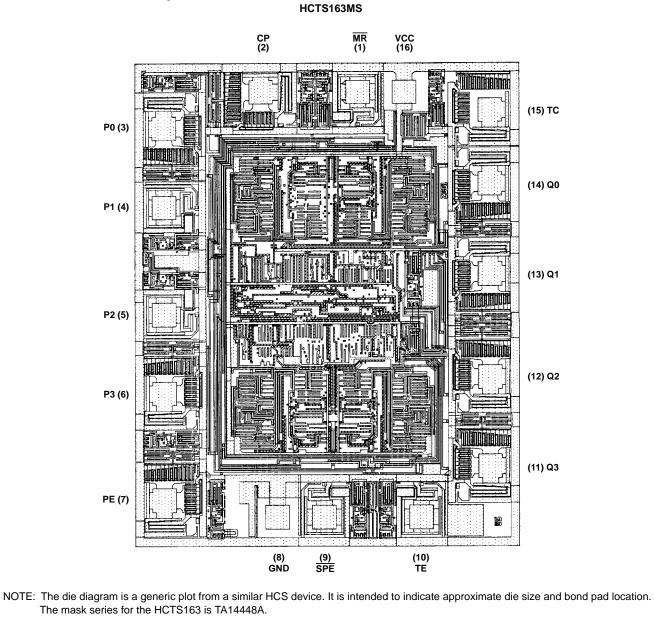
104 x 86 mils

METALLIZATION:

Type: AlSi Metal Thickness: $11k\dot{A} \pm 1k\dot{A}$

GLASSIVATION:

Type: SiO₂ Thickness: $13k\dot{A} \pm 2.6k\dot{A}$


WORST CASE CURRENT DENSITY:

< 2.0 x 10⁵A/cm²

BOND PAD SIZE:

100μm x 100μm 4 mils x 4 mils

Metallization Mask Layout

