

R8A66120FFA

4M-bit x 2 MULTIPLE FIELD MEMORY

Description

R8A66120FFA is high-speed field memory with two FIFO (First In First Out) memories of 4M-bit, which uses high-performance silicon gate process technology.

Prc

Features

•Total memory	Capacity	8Mega-bit		
ngn speed op	cycle time	10.0ns(Min.) 6.0ns(Max.)	fmax = 100M	Hz
•Output hold tim	1e	1.0ns(Min.)		
 Supply voltage 		3.3 ± 0.3V		
•Variable length	delay bit			
•Synchronous v •3 states output	vrite/read operation			
•Package	PLQP0048K	(B-A (48P6Q-A))	
0	(48pins 7x7r	mm body LQFP)	J. C
W-CDMA base	station, Digital PPC,	Digital TV,VTR	and so on.	
ptions	1K-word = 1024-w	vords		

Application

Mode Descriptions

Pin Configuration (Top view)

REJ03F0161-0170 Rev.1.70 May.16.2008 page 1 of 14

REJ03F0161-0170 Rev.1.70 May.16.2008

Block Diagram

REJ03F0161-0170 Rev.1.70 May.16.2008 page 2 of 14

Pin Function Description

Pin name (*1)	Name	Input/ Output	Number of pin(s)	Function
CKx	Clock input	Input	2	They are clock inputs.
WEx	Write enable input	Input	2	They are write enable control inputs. When they are "L", a write enable status is provided.
WRESx	Write reset input	Input	2	They are reset inputs to initialize a write address counter of internal FIFO. When they are "L", a write reset status is provided.
REx	Read enable input	Input	2	They are read enable control inputs. When they are "L", a read enable status is provided.
RRESx	Read reset input	Input	2	They are reset inputs to initialize a read address counter of internal FIFO. When they are "L", a read reset status is provided.
Dx<3:0>	Data input	Input	8	They are data input bus.
Qx<3:0>	Data output	Output	8	They are data output bus.
MODE	Mode setting input	Input	1	This is a pin for settin <mark>g</mark> op <mark>er</mark> ation mode. MODE should be fixed at "L".
TEST<2:1>	Test setting input	Input	2	They are pins for test. TEST<2:1> should be fixed at "L".
POR	Power on reset input	Input	1	This is a power on reset input.
Vcc	Power supply pin	-	9	They are 3.3 V power supply pins.
GND	Ground pin	-	9 🌔	They are ground pins.

*Note1: X of the pin name shows A or B. A = A-system, B = B-system.

Mode pin Setting

In normal operation mode. It should be fixed on "L".

Pin Name	Operation MODE		
MODE			
L	Normal operation		
H 🏉	Out of a guarantee		

Operation Description

REJ03F0161-0170 Rev.1.70 May.16.2008 page 3 of 14

R8A66120FFA can be controlled two pieces of 1024K-word x 4-bit FIFO completely independently. Taking FIFO (A) as an example, the operation of FIFO memory is described as follows. The operation of FIFO (B) is the same as that of FIFO (A).

When write enable input WEA is "L", the contents of data input DA<3:0> are written into FIFO (A) in synchronization with the rising of clock input CKA.

At this time, the write address counter of FIFO (A) is incremented. When WEA is "H", this IC disable to write data into FIFO (A) and the write address counter of FIFO (A) is not incremented. When write reset input WRESA is "L", the write address counter of FIFO (A) is initialized.

When read enable input REA is "L", the contents of FIFO (A) are outputted to data output QA<3:0> in synchronization with the rising of clock input CKA.

At this time, the read address counter of FIFO (A) is incremented. When REA is "H", this IC disable to read data from FIFO (A) and the read address counter of FIFO (A) is not incremented. Also QA<3:0> become high impedance state. When read reset input RRESA is "L", the read address counter of

FIFO (A) is initialized.

Electrical Characteristics

Absolute Maximum Ratings (Ta = 0 ~ 70°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3 ~ +3.8	V
VI	Input voltage	A value based on GND	-0.3 ~ Vcc+0.3	V
Vo	Output voltage		-0.3 ~ Vcc+0.3	V
Pd	Maximum power dissipation	Ta = 70°C	550	mW
Tstg	Storage temperature		-55 ~ +150	°C

Recommended Operating Conditions

Test conditions		Limits			
Test conditions	Min.	Тур.	Max. 🧹	Unit	
	3.0	3.3	3.6	V	
A value based on GND	0		Vcc	V	
	0		Vcc	V	
rature	0		70	°C	
	A value based on GND	A value based on GND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Min. Typ. A value based on GND 3.0 3.3 0 0 0 orature 0 0	Min. Typ. Max. A value based on GND 3.0 3.3 3.6 0 Vcc 0 Vcc orature 0 70 70	

DC Characteristics (Ta = 0 ~ 70°C, Vcc = 3.3 ±0.3V, GND = 0V, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Linit
Cymbol		Test conditions	Min.	Тур.	Max.	Onit
Vih	"H" input voltage	A value based on CND	0.8×Vcc			V
VIL	"L" input voltage	A value based off GND			0.2 x Vcc	V
Vон	"H" output voltage	Юн = -4mA	Vcc-0.4			V
Vol	"L" output voltage	loL = 4mA			0.4	V
Іін	"H" input current	VI = Vcc			10	uA
lı∟	"L" input current	Vi = GND			-10	uA
Іогн	Off state "H" output current	Vo = Vcc			10	uA
lozl	Off state "L" output current	Vo = GND			-10	uA
lcc	Operating mean current dissipation	Vcc = 3.3 ± 0.3 V Vı : Repeat "H" and "L" Vo : Output open tCK = 10.0ns (f = 100MHz)			150	mA
CI	Input capacitance 🥢	f = 1MHz			10	рF
Co	Off state output capacitance	f = 1MHz			15	рF

;0¹

Power On

After power-on this IC, some circuits of internal FIFO should be initialized by the following procedures (1), (2).

Also, when the supply voltage (Vcc) drops below the operation voltage range(3.0 to 3.6V) during operating and so this is powered on again, they should be initialized by the same procedures.

(1)After 1msec or more has passed under the following conditions (i), (ii) and (iii), please input the signal of "L" to "H" to POR pin for power on reset. After of that, POR pin should be fixed at "H".

- (i) :Vcc reaches to the operation voltage range.
- (ii) :The clock signal is inputted to CK pin
- (iii) :POR pin is fixed at "L".

(2)After POR pin is fixed at "H", write reset and read reset operations should be provided with 100 cycles or more respectively.

There is no problem in these reset operations, if total reset cycles reach to 100 or more even if those are discontinuous.

Symbol	Parameter		Limits			
		Min.	Тур.	Max.	Onit	
tCK	Clock (CK) cycle	10		200		
tCKH	CK "H" pulse width	4				
tCKL	CK "L" pulse w idth	4				
tDS	Input data setup time to CK	4				
tDH	Input data hold time to CK	0				
tWRESS	Write reset setup time to CK	4				
tWRESH	Write reset hold time to CK	0			ne	
tRRESS	Read reset setup time to CK	4			115	
tRRESH	Read reset hold time to CK	0				
tWES	Write enable setup time to CK	4				
tWEH	Write enable hold time to CK	0				
tRES	Read enable setup time to CK	4				
tREH	Read enable hold time to CK	0				
tr, tf	Input pulse rise / fall time			3		

Timing Requirements (Ta = 0 ~ 70°C,Vcc = 3.3 ± 0.3V, GND = 0V, unless otherwise noted)

Switching Characteristics (Ta = $0 \sim 70^{\circ}$ C, Vcc = 3.3 ± 0.3 V, GND = 0V, unless otherwise noted)

Symbol	Parameter	20	Lloit		
Gymbol		Min.	Тур.	Max.	Onit
tAC	Output access time to CK			6	
tOH	Output hold time to CK	1			ne
tOEN	Output enable time to CK	1		6	115
tODIS	Output disable time to CK	1		6	

FOLSI

The load capacitance CL includes the floating capacitance of connections and a input capacitance of a probe.

tODIS and tOEN Measurement Conditions

REJ03F0161-0170 Rev.1.70 May.16.2008 page 7 of 14

Operating Timing

Write Cycle

In case of WE = "L"

Write Reset and Write Enable Combination Cycle

R8A66120FFA

REJ03F0161-0170 Rev.1.70 May.16.2008 page 9 of 14

Caution When Write Cycle and Read Cycle Approach Each Other

The interval m between write cycle and a read cycle should be secured more than 256 cycles when the write cycle goes ahead of the read cycle on the following conditions, that is to say the interval less than 255 cycles is forbidden.

WRES, RRES="H"; WE, RE="L", and

• Both write side and read side are activated continuously.

When once this restriction to the interval isn't fulfilled, writing data is guaranteed, but reading data isn't guaranteed not only for the cycles when it isn't fulfilled but also for the following 256 cycles after it is fulfilled again. In this 256 cycles, read disable and read reset cycles are not counted.

But the following condition is an exception to the restriction to forbid the intervals less than 255 cycles.

• Either write side or read side is temporarily stopped owing to reset cycles (WRES or RRES="L") or disable cycles (WE or RE ="H").

Note: Also, when the address counter is incremented up to the last cycle of 1-line and then returned to 0 cycle, the interval m between write and read cycles should be secured more than 256 cycles taking account that they are cyclic and serial lines.

In the case of read cycle goes ahead of the write cycle or write cycle and read cycle are accorded. It's exceptions of the restriction on forbid the intervals less than 255 cycles.

Caution of The State of Clock Stopping

Stopping of clock signal of this IC is forbidden during operating of it. "Stopping of clock signal" mean that CK is fixed at "L" or "H" for more than tck(Max)(=200ns).

When this restriction to tck isn't fulfilled, all writing data before stopping of clock signal isn't defined.

Once the clock signal stopped, 1 cycle or more of both write reset cycles and read reset cycles should be secured to operate again.

Variable Length Delay bits

The 1-line length (cycle number) of R8A66120FFA is 1,048,576-cycle.

1-line Delay

In read cycles, an output data is read out at the (first) rising edge of CK (i.e. the start of the cycle). In write cycles, an input data is written at the (second) rising edge of CK (i.e. the end of the cycle). So 1-line delay can be made easily according to the control method of the following figure.

N-bit Delay 1

(Reset at cycles corresponding to delay length)

REJ03F0161-0170 Rev.1.70 May.16.2008 page 11 of 14

N-bit Delay 2

N-bit Delay 3 (Sliding address by disabling RE for cycles corresponding to delay length)

REJ03F0161-0170 Rev.1.70 May.16.2008 page 12 of 14

Reading shortest a data written at n cycle on write-side

In order to read out a written data, CK should be inputted for 256 cycles and more after the data is written.

In following figure, an example is shown of reading out the data written at the rising edge of CK (*1) at n cycle on write-side. Output data becomes invalid when this restriction isn't fulfilled.

Also, take care of the restriction to the interval between a write cycle and a read cycle (ref. page10).

Reading longest a data written at n cycle on write-side : 1-line Delay Output Q of n cycle<1>* can be read out until n cycle<1>* on read-side and n cycle<2>* on write-side overlap each other.

 ${<}0{>}^{*}$, ${<}1{>}^{*}$ and ${<}2{>}^{*}$ indicate a line number.

REJ03F0161-0170 Rev.1.70 May.16.2008 page 13 of 14

Package Outline

All trademarks and registered trademarks are the property of their respective owners.

REJ03F0161-0170 Rev.1.70 May.16.2008 page 14 of 14

RenesasTechnology Corp. sales strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Neprocess of PC PC PC PC Sales Strategic Planning Div.
 Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. This document is provided for reference purposes only so that Renessa customers may select the appropriate Renessa products for their use. Renessa neither makes waranties or representations with respect to the information on this document.

 a. you thore rights or you there rights or the purposes only so that Renessa customers may select the appropriate Renessa products for the test of any information in this document, including, purpose of any other military use. When exporting the products or the test of any information in this document, including, and regulations, and products or the test of any other military use. When exporting the products or the test of any information in this document, including, page and regulations, and products or the test of the second with a test of the second with the development of the second with a test of the second with regulations.

 3. All information included in this document, you should valuate the information in this document, but the second with a fenessa second with a fenessa second with a fenessa second with a fenessa second with the document.

 3. Renessa has used reasonable care in compling the information in this document, but the second with the secon

http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510