TONE/PULSE DIALER WITH HANDFREE LOCK AND HOLD FUNCTIONS

GENERAL DESCRIPTION

The W91320N series are Si-gate CMOS ICs that provide the necessary signals for tone or pulse dialing. The W91320N series provide one-key redial, handfree dialing, hold, redial, and lock functions.

FEATURES

- DTMF/pulse switchable dialer
- 32-digit redial memory
- Pulse-to-tone (*/T) keypad for long distance call operation
- Uses 5×5 keyboard
- Easy operation with redial, flash, pause, and */T keypads
- Pause, pulse-to-tone (*/T) can be stored as a digit in memory
- 0 or 9 dialing inhibition pin for PABX system or long distance dialing lock out
- Off-hook delay 300 mS in lock mode (DP will keep low for 300 mS while off hook)
- First key-in delay 300 mS output in lock mode
- Dialing rate ($10,20 \mathrm{ppS}$) selected by bonding option
- Minimum tone output duration: 93 msec .
- Minimum intertone pause: 93 msec .
- Flash break time ($73,100,300,600 \mathrm{msec}$.) selectable by keypad, and the pause time is 1.0 sec .
- On-chip power-on reset
- Uses 3.579545 MHz crystal or ceramic resonator
- Packaged in 18, 20, or 22-pin plastic DIP
- The different dialers in the W91320N series are shown in the following table:

TYPE NO.	REPLACEMENT TYPE NO.	PULSE (ppS)	FLASH $(\mathbf{m S})$	M/B	HANDFREE DIALING	LOCK	PACKAGE (PINS)
W91320N	W91320	10	$600 / 100 / 300 / 73$	Pin	-	-	18
W91321N	W91321	20	$600 / 100 / 300 / 73$	Pin	-	-	18
W91320AN	W91320A	10	$600 / 100 / 300 / 73$	Pin	Yes	-	20
W91321AN	W91321A	20	$600 / 100 / 300 / 73$	Pin	Yes	-	20
W91320LN	W91322L	10	$600 / 100 / 300 / 73$	Pin	-	Yes	20
W91320ALN	W91322AL	10	$600 / 100 / 300 / 73$	Pin	Yes	Yes	22

PIN CONFIGURATIONS

PIN DESCRIPTION

SYMBOL	18-PIN	20-PIN	22-PIN	1/0	FUNCTION
Column- Row Inputs	$\begin{gathered} \hline 1-4 \\ \& \\ 15-18 \end{gathered}$	$\begin{gathered} 1-4 \\ \& \\ 17-20 \end{gathered}$	$\begin{gathered} 1-4 \\ \& \\ 19-22 \end{gathered}$	1	The keyboard inputs may be used with either the standard 5×5 keyboard or the inexpensive single contact (Form A) keyboard. Electronic input from a $\mu \mathrm{C}$ can also be used. A valid key-in is defined as a single row being connected to a single column
XT, XT	7, 8	$\begin{gathered} \hline 7,8 \\ (8,9, \\ \text { w931320LN } \\ \text { only) } \end{gathered}$	8, 9	I, O	A built-in inverter provides oscillation with an inexpensive 3.579545 MHz crystal or ceramic resonator.
$\frac{\mathrm{T} / \mathrm{P}}{\mathrm{MUTE}}$	9	9 (10, w9320LN only)	10	0	The T/P MUTE is a conventional CMOS N-channel open drain output. The output transistor is switched on during dialing sequence, one-key redial break and flash break time. Otherwise, it is switched off.
MODE	13	15 (14, w9320LN only)	16	1	Pulling mode pin to Vss places the dialer in tone mode. Pulling mode pin to Vod places the dialer in pulse mode. ($10 \mathrm{ppS} ; 20 \mathrm{ppS}$ for W91321N/321AN M/B $=40: 60$) Floating mode pin places the dialer in pulse mode. (10 ppS ; 20 ppS for W91321N/321AN M/B = 33.3:66.7)
$\overline{\text { HKS }}$	10	$\begin{gathered} \hline 12 \\ (11, \\ \text { w91320LN } \\ \text { only) } \end{gathered}$	13	1	Hook switch input. $\overline{\text { HKS }}=$ VDD: On-hook state. Chip in sleeping mode, no operation. $\overline{\text { HKS }}=$ Vss: Off-hook state. Chip is enable for normal operation. $\overline{\text { HKS }}$ pin is pulled to VDD by internal resistor.

Pin Description, continued

SYMBOL	18-PIN	20-PIN	22-PIN	I/O	FUNCTION			
DP / C5	11	13 (12, W91320LN only)	14	0	N -channel open drain dialing pulse output. Flash key will cause $\overline{\mathrm{DP}}$ to be active in either tone mode or pulse mode. The timing diagram for pulse mode is shown in Figure 1 (a, b, c, d).			
Vdd, Vss	14, 6	$\begin{gathered} \hline 16,6 \\ (16,7 \\ \text { w91320Ln } \\ \text { only) } \\ \hline \end{gathered}$	18, 7	I	Power input pins.			
H/P MUTE	5	$\begin{gathered} \hline 5 \\ (6, \\ \text { w91320LN } \\ \text { only) } \end{gathered}$	6	0	The H/P MUTE is a conventional inverter output. During pulse dialing, flash break, one-key redial break, and hold period, this output is active high; otherwise, it remains in low state.			
NC	-	$\begin{gathered} 15 \\ \text { (W91320LN } \\ \text { only) } \end{gathered}$	17	-	No connection.			
DTMF	12	14 (13, W91320LN only)	15	0	In pulse mode, this pin remains in low state at all time. In the tone mode, it will output a dual or single tone. Detailed timing diagram for tone mode is shown in Figure 2(a, b, c, d).			
						Specified	Actual	Error \%
					R1	697	699	+0.28
					R2	770	766	-0.52
					R3	852	848	-0.47
					R4	941	948	+0.74
					C1	1209	1216	+0.57
					C2	1336	1332	-0.30
					C3	1477	1472	-0.34

Pin Description, continued

SYMBOL	18-PIN	20-PIN	22-PIN	I/O	FUNCTION				
$\begin{aligned} & \overline{\mathrm{HFI}} \\ & \mathrm{HFO} \end{aligned}$		$\begin{gathered} 10,11 \\ \left(\begin{array}{c} \text { W91320AN } / \\ \text { 321AN }) \end{array}\right. \end{gathered}$	11, 12	I, O	Handfree control pins. The handfree control state is toggled on by a low pulse on the HFI input pin. The status of the handfree control state is described in the following table:				
					CURRENT STA			Xt ST	
					Hook SW.	HFO	Input	HFO	Dialing
					-	Low	$\overline{\mathrm{HFI}} 7$	High	Yes
					On Hook	High	$\overline{\mathrm{HFI}}$ ¢	Low	No
					Off Hook	High	$\overline{\mathrm{HFI}}$ ¢	Low	Yes
					On Hook	-	Off Hook	Low	Yes
					Off Hook	Low	On Hook	Low	No
					Off Hook	High	On Hook	High	Yes
					$\overline{\mathrm{HFI}} \mathrm{pin}$ is p resistor. Detailed tim Figure 3(a,	ulled ing $b, c)$	to VDD iagrams		nal own in
LOCK	-	5 $(6$, W91320LN only)	5	I	The functio prevent "0" PABX syste When the fir or 9, all key key, becom generates no reinitialized	of t dialin m lo rst ke inpu e inv o out by a	his termin g and "9 g distan y input ts, includ alid and put. The reset.	nal is dial ce cal fter r ing th he ch telep	under control. set is 0 0 or 9 p one is
					$\overline{\text { LOCK PIN }}$		FUN	CTIO	
					Floating		Normal did	ling m	
					VDD		"0," "9" did	ling in	ibited
					Vss		"0" dialing	inhibit	

Electronics Corp.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Keyboard Operation

C1	C2	C3	C4	$\overline{\mathrm{DP}} / \overline{\mathrm{C}}$
1	2	3		
4	5	6	F1	
7	8	9	F2	H
*/T	0	\#	R/P1	R
R/P2	R	F3	F4	

- R/P1, R/P2: Redial and pause function key, P1 is 3.6 sec . and $P 2$ is 2.0 sec .
- $* / \mathrm{T}$: * in tone mode and $\mathrm{P} \rightarrow \mathrm{T}$ in pulse mode
- F1, ..., F4: Flash keys, the flash break time of F1 $=600 \mathrm{mS}, \mathrm{F} 2=100 \mathrm{mS}, \mathrm{F} 3=300 \mathrm{mS}$, F4 $=73$ mS
- H: Hold function key
- R: One-key redial function

Notes: D1, ..., Dn, D1', ..., Dn': 0, ..., 9, */T, \# R/P: R/P1 or R/P2.

Fn: F1, .., F4

W91320N SERIES

Normal Dialing

1. D1, D2, ..., Dn will be dialed out.
2. Dialing length is unlimited, but redial is inhibited if length oversteps 32 digits in normal dialing.

Redialing

a. The redial memory content will be dialed out.
b. The R/P key can execute the redial function only as the first key-in after off-hook; otherwise, it executes pause function.
c. If redialing length oversteps 32 digits, the redialing function will be inhibited.
2.

a. The one-key redialing function timing diagram is shown in Figure 4.
b. If the dialing of D 1 to Dn is finished, pressing the R key will cause the pulse output pin to go low for 2.2 seconds break time and 0.6 seconds pause time will automatically be added.

d. The redial function by R key has no break time (2.2 sec.) if it is the first key in after off-hook.

e. The	R	key uses the same redial buffer as the redial function $\begin{array}{ll}\text { by }\end{array}$	$R / P 1$ or $R / P 2$ key,
			and it is actived during normal dialing or repertory dialing.

Access Pause

1. The pause function is executed in normal dialing, redial dialing, or memory dialing.
2. The pause duration of 2.0 or 3.6 seconds per pause is selected by keypad, but only one pause time can be stored in memory.
3. The detailed timing diagram for the pause function is shown in Figure 5.

Pulse-to-tone (*/T)

W91320N SERIES

rinbond
 Electronics Corp

1. If the mode switch is set to pulse mode, then the output signal will be:

D1, D2, ..., Dn, Pause (2.0 sec . or 3.6 sec .), D1', D2', ..., Dn'
(Pulse)
(Tone)
2. If the mode switch is set to tone mode, then the output signal will be:

D1, D2, ..., Dn, *, D1', D2', ..., Dn'
(Tone)
(Tone)
3. The dialer remains in tone mode when the digits have been dialed out and can be reset to pulse mode only by going on-hook.
4. The pulse-to-tone function timing diagram is shown in Figure 6.

Flash

OFF HOOK (or ON HOOK	O $\overline{\mathrm{HFI}} \overline{\mathrm{i}} \underline{\mathrm{o}}$
)	

1. $\mathrm{Fn}=\mathrm{F} 1, \ldots$, F 4
2. The dialer will execute flash break time of 600 mS (F1), 100 mS (F2), 300 mS (F3), or 73 mS (F4) and all the pause time is 1.0 sec . before the next digit is dialed out.
3. Flash key can not be stored as a digit in memory. The flash key has the first priority among the keyboard functions.
4. The system will return to the initial state after the flash pause time is finished.
5. The flash function timing diagram is shown in Figure 7.

HOLD

OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFI} \overline{\mathrm{i}} \overline{\mathrm{O}}}$), H

The hold function is switched on and off by a toggle switch. The keypad will be disabled when in hold mode. The function timing diagram is shown in Figure 3(a, b, c).

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
DC Supply Voltage	VDD-VsS	-0.3 to +7.0	V
Input/Output Voltage	VIL	$\mathrm{Vss}-0.3$	V
	VIH	$\mathrm{VDD}+0.3$	V
	VoL	$\mathrm{Vss}-0.3$	V
	VoH	$\mathrm{VDD}+0.3$	V
Power Dissipation	PD	120	mW
Operation Temperature	TOPR	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	TsTG	-55 to +150	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

DC CHARACTERISTICS
(Vdd-Vss $=2.5 \mathrm{~V}$, Fosc. $=3.579545 \mathrm{MHz}, \mathrm{TA}=25^{\circ} \mathrm{C}$, All outputs unloaded)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	Vdd	-	2.0	-	5.5	V
Operating Current	Iop	Tone, Unloaded	-	0.4	0.6	mA
		Pulse, Unloaded	-	0.2	0.4	
Standby Current	IsB	$\overline{\mathrm{HKS}}=\mathrm{Vss}$, No load \& No key entry	-	-	15	$\mu \mathrm{A}$
Memory Retention Current	IMR	$\begin{aligned} & \overline{H K S}=\mathrm{VDD}, \\ & \mathrm{VDD}=1.0 \mathrm{~V} \end{aligned}$	-	-	0.2	$\mu \mathrm{A}$
DTMF Output Voltage	Vto	Row group, $R \mathrm{~L}=5 \mathrm{~K} \Omega$	130	150	170	$\begin{gathered} \mathrm{mVrm} \\ \mathrm{~s} \end{gathered}$
Pre-emphasis		Col/Row, $\text { VDD }=2.0 \text { to } 5.5 \mathrm{~V}$	1	2	3	dB
DTMF Distortion	THD	$\begin{aligned} & R L=5 \mathrm{~K} \Omega, \\ & \mathrm{VDD}=2.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-30	-23	dB
DTMF Output DC Level	VTDC	$\begin{aligned} & \mathrm{RL}=5 \mathrm{~K} \Omega, \\ & \mathrm{VDD}=2.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	1.0	-	3.0	V
DTMF Output Sink Current	ITL	V TO $=0.5 \mathrm{~V}$	0.2	-	-	mA
$\overline{\mathrm{DP}}$ Output Sink Current	IPL	$\mathrm{VPO}=0.5 \mathrm{~V}$	0.5	-	-	mA
T/P MUTE Output Sink Current	ITML	V TMO $=0.5 \mathrm{~V}$	0.5	-	-	mA
H/P MUTE Output	IHPH	$\mathrm{VHPL}=2.0 \mathrm{~V}$	0.5	-	-	mA
Drive/Sink Current	IHPL	$\mathrm{VHPL}=0.5 \mathrm{~V}$	0.5	-	-	mA
HFO Drive/Sink Current	IHFH	$\mathrm{VHFH}=2.0 \mathrm{~V}$	0.5	-	-	mA
	IHFL	$\mathrm{VHFL}=0.5 \mathrm{~V}$	0.5	-	-	mA
Keypad Input Drive Current	IKD	$\mathrm{VI}=0.0 \mathrm{~V}$	30	-	-	$\mu \mathrm{A}$
Keypad Input Sink Current	Iks	$\mathrm{VI}=2.5 \mathrm{~V}$	200	400	-	$\mu \mathrm{A}$
$\overline{\text { HKS I/P Pull-High Resistor }}$	RHK	-	-	300	-	$\mathrm{K} \Omega$
Keypad Resistance	RK	-	-	-	5	$\mathrm{K} \Omega$

AC CHARACTERISTICS

(VDD-Vss $=2.5 \mathrm{~V}$, Fosc. $=3.579545 \mathrm{MHz}, \mathrm{TA}=25^{\circ} \mathrm{C}$, All outputs unloaded)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Key-in Debounce	TKID	-	-	20	-	mS
Key Release Debounce	TKRD	-	-	20	-	mS
Off-hook Delay	Tofd	Lock only	-	300	-	mS
First Key-in Delay	TfkD	Lock only	-	300	-	mS
Pre-digit-pause1	TPDP1	Mode = V VD	-	40	-	mS
	10 ppS	Mode = Floating	-	33.3	-	
Pre-digit-pause2	TPDP2	Mode $=$ VDD	-	20	-	mS
	20 ppS	Mode = Floating	-	16.7	-	
Interdigit Pause (Auto Dialing)	TIDP	10 ppS	-	800	-	mS
		20 ppS	-	500	-	
Make/Break Ratio	M:B	Mode $=$ VDD	-	40:60	-	\%
		Mode = Floating	-	33.3:66.7	-	
Tone Output Duration	Tтd	Auto dialing	-	93	-	mS
Intertone Pause	TITP	Auto dialing	-	93	-	mS
Flash Break Time	TFB	F1	-	600	-	mS
		F2	-	100	-	
		F3		300		
		F4	-	73	-	
Flash Pause Time	Tfp	F1, F2, F3, F4	-	1.0	-	S
Pause Time	TP	R/P1	-	3.6	-	S
		R/P2	-	2.0	-	
One-key Redial Break Time	Trb	-	-	2.2	-	S
One-key Redial Pause Time	TRP	-	-	600	-	mS

Notes:

1. Crystal parameters suggested for proper operation are $\mathrm{Rs}<100 \Omega, \mathrm{Lm}=96 \mathrm{mH}, \mathrm{Cm}=0.02 \mathrm{pF}, \mathrm{Cn}=5 \mathrm{pF}, \mathrm{Cl}=18 \mathrm{pF}$, Fosc. $=3.579545 \mathrm{MHz} \pm 0.02 \%$.
2. Crystal oscillator accuracy directly affects these times.

TIMING WAVEFORMS

Figure 1a. Normal Dialing Timing Diagram (Pulse Mode Without Lock Function)

Figure 1b. Normal Dialing Timing Diagram (Pulse Mode with Lock Function)

Timing Waveforms, continued

Figure 1c. Auto Dialing Timing Diagram (Pulse Mode Without Lock Function)

Figure 1d. Auto Dialing Timing Diagram (Pulse Mode with Lock Function)

Timing Waveforms, continued

Figure 2a. Normal Dialing Timing Diagram (Tone Mode Without Lock Function)

Figure 2b. Normal Dialing Timing Diagram (Tone Mode with Lock Function)

Timing Waveforms, continued

Figure 2c. Auto Dialing Timing Diagram (Tone Mode Without Lock Function)

Figure 2d. Auto Dialing Timing Diagram (Tone Mode with Lock Function)

Timing Waveforms, continued

Figure 3a. Handfree and Hold Timing Diagram
Note: The H KEY cannot be enabled when chip is disabled.

Figure 3b. Handfree and Hold Timing Diagram

Note: The $\overline{\mathrm{HFI}}$ and $\overline{\mathrm{HKEY}}$ inputs will toggle the HFO signal; as soon as either $\overline{\mathrm{HFI}}$ or $\overline{\mathrm{HKEY}}$ is activated, the HFO signal will go high and previous activate inputs will be ignored.

Timing Waveforms, continued

Figure 3c. Handfree and Hold Timing Diagram
Note: Changing the state of the HKS signal from high to low will initialize the HFO and H/P MUTE signals.

Figure 4. One-key Redial Timing Diagram (Pulse Mode)

Timing Waveforms, continued

Figure 5. Pause Function Timing Diagram

Figure 6. Pulse-to-tone Timing Diagram

Timing Waveforms, continued

Figure 7. Flash Timing Diagram

Headquarters
No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5792697
http://www.winbond.com.tw/
Voice \& Fax-on-demand: 886-2-7197006

Winbond Electronics (H.K.) Ltd. Winbond Electronics North America Corp.
Rm. 803, World Trade Square, Tower II, Winbond Memory Lab.
123 Hoi Bun Rd., Kwun Tong, Winbond Microelectronics Corp.
Kowloon, Hong Kong
TEL: 852-27516023
FAX: 852-27552064

Winbond Systems Lab.
2730 Orchard Parkway, San Jose,
CA 95134, U.S.A.
TEL: 1-408-9436666
FAX: 1-408-9436668

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East Rd.,
Taipei, Taiwan
TEL: 886-2-7190505
FAX: 886-2-7197502

