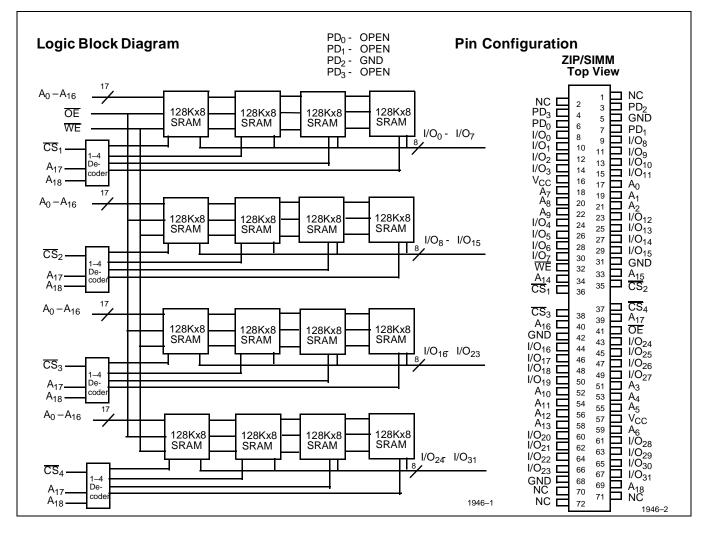


CYM1946

Features

- High-density 16-megabit SRAM module
- 32-bit Standard Footprint supports densities from 16K x 32 through 1M x 32
- High-speed SRAMs
- Access time of 35 ns
- Low active power
 - 7.3W (max.) at 35ns
- Compatible with CYM1821, CYM1831, CYM1836, CYM1841, and CYM1851 JDEC Modules

Functional Description


The CYM1946 is a high-performance 16-megabit static RAM module organized as 512K words by 32 bits. This module is

512K x 32 Static RAM Module

constructed from 16 128K x 8 SRAMs in SOJ packages mounted on an epoxy laminate substrate. Four chip selects are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.

The CYM1946 is designed for use with standard 72-pin SIMM sockets. The pinout is downward compatible with the 64-pin JEDEC ZIP/SIMM module family (CYM1821, CYM1831, CYM1836, and CYM1841). Thus, a single motherboard design can be used to accommodate memory depth ranging from 16K words (CYM1821) to 1,024K words (CYM1851).

Presence detect pins (PD_0-PD_3) are used to identify module memory density in applications where modules with alternate word depths can be interchanged.

Selection Guide

	1946-35	1946-45	1946-55
Maximum Access Time (ns)	35	45	55
Maximum Operating Current (mA)	1100	1100	1100
Maximum Standby Current (mA)	585	585	585

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.) $% \label{eq:constraint}$ Storage Temperature-55°C to +125°C Ambiant Tar

Ambient Temperature with
Power Applied10°C to +85°C
Supply Voltage to Ground Potential0.5V to +7.0V

DC Voltage Applied to Outputs

in High Z State	– $0.5V$ to +V _{CC}
DC Input Voltage	–0.5V to +7.0V

Operating Range

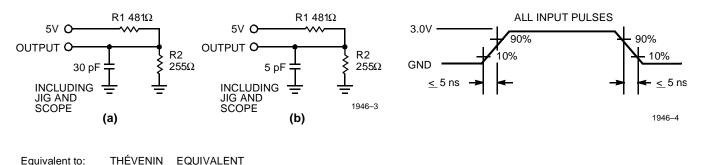
Range	Ambient Range Temperature	
Commercial	0°C to +70°C	5V ± 10%

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA	2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage		-0.3	0.8	V
I _{IX}	Input Load Current	$GND \leq V_{I} \leq V_{CC}$	-32	+32	μA
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled	-20	+20	μA
I _{CC}	V _{CC} Operating Supply Current	$\frac{V_{CC}}{CS_N} = Max., I_{OUT} = 0 \text{ mA}, -35, -45, -55$		1100	mA
I _{SB1}	Automatic CS Power-Down Current ^[1]	Max. V _{CC} , CS ≥ V _{IH} , Min. Duty Cycle = 100%		585	mA
I _{SB2}	Automatic CS Power-Down Current ^[1]	$ \begin{array}{l} \mbox{Max. } V_{CC}, & -35, -45, -55 \\ \hline CS \ge V_{CC} - 0.2V, & \\ V_{IN} \ge V_{CC} - 0.2V, \mbox{ or } \\ V_{IN} \le 0.2V & \end{array} $		200	mA

Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C _{INA}	Input Capacitance (WE, OE, A ₀₋₁₆)	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	175	pF
C _{INB}	Input Capacitance (CS)	$V_{CC} = 5.0V$	10	pF
C _{OUT}	Output Capacitance]	45	pF
C _{INA17-18}	Input Capacitance A _{17–18}		45	pF


Notes:

A pull-up resistor to V_{CC} on the CS input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.
Tested on a sample basis.

OUTPUT O

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[3]

O

1.73V

167Ω

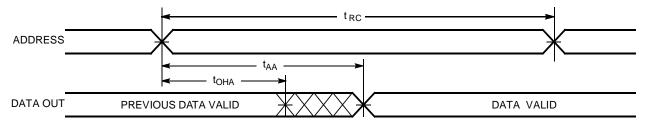
		194	1946-35		1946-45		1946-55	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE		1	1		•	•	•	
t _{RC}	Read Cycle Time	35		45		55		ns
t _{AA}	Address to Data Valid		35		45		55	ns
t _{OHA}	Data Hold from Address Change	5		5		5		ns
t _{ACS}	CS LOW to Data Valid		35		45		55	ns
t _{DOE}	OE LOW to Data Valid		15		17		22	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z		12		17		22	ns
t _{LZCS}	CS LOW to Low Z ^[4]	10		10		10		ns
t _{HZCS}	CS HIGH to High Z ^[4, 5]		17		22		27	ns
t _{PD}	CS HIGH to Power-Down		35		45		55	ns
WRITE CYCLE	6]	•		•				•
t _{WC}	Write Cycle Time	35		45		55		ns
t _{SCS}	CS LOW to Write End	30		40		50		ns
t _{AW}	Address Set-Up to Write End	30		40		50		ns
t _{HA}	Address Hold from Write End	5		5		5		ns
t _{SA}	Address Set-Up to Write Start	2		2		2		ns
t _{PWE}	WE Pulse Width	30		35		45		ns
t _{SD}	Data Set-Up to Write End	20		25		35		ns
t _{HD}	Data Hold from Write End	7		7		7		ns
t _{LZWE}	WE HIGH to Low Z	5		5		5		ns
t _{HZWE}	WE LOW to High Z ^[5]		15		15		15	ns

Notes:

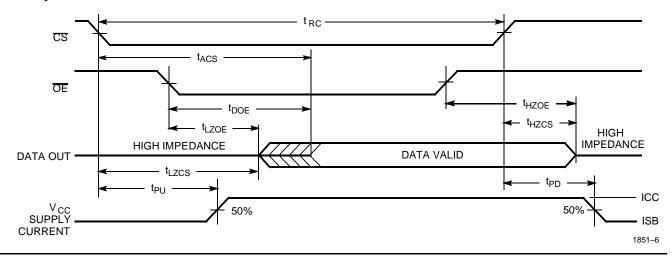
3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

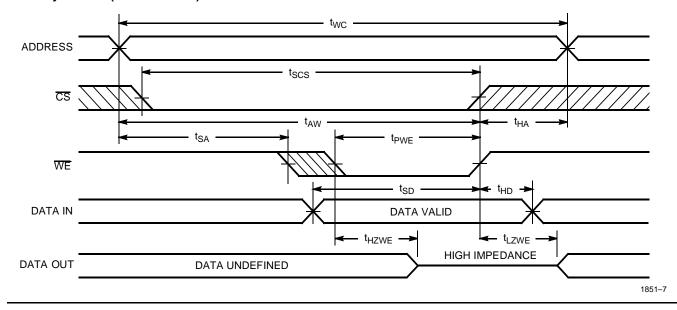
4.

5.


At any given temperature and voltage condition, t_{HZCS} is less than t_{LZCS} for any given device. These parameters are guaranteed and not 100% tested. t_{HZCS} and t_{HZWE} are specified with $C_L = 5 \text{ pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. 6.

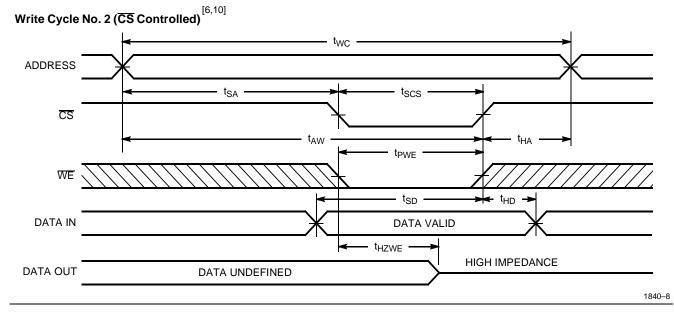
CYM1946


Switching Waveforms


Read Cycle No. 1 ^[7,8]

1851–5

Read Cycle No. 2 [7,9]


Write Cycle No. 1 (WE Controlled) [6]

Notes:

- 7. 8.
- WE is HIGH for read cycle. Device is continuously selected, $\overline{CS} = V_{IL}$, and $\overline{OE} = V_{IL}$. Address valid prior to or coincident with \overline{CS} transition LOW. 9.

Switching Waveforms (continued)

Note:

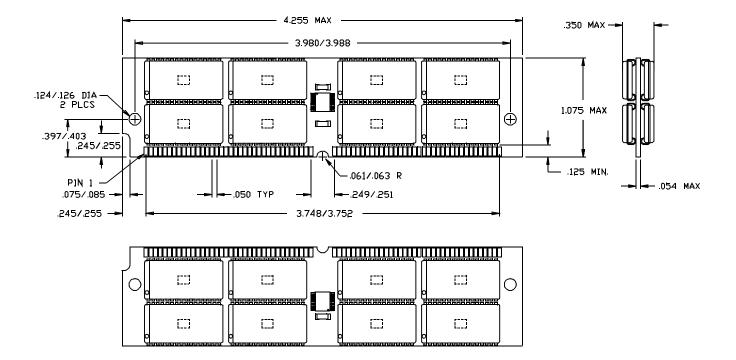
10. If CS goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Truth Table

CS	WE	OE	Inputs/Output	Mode
Н	Х	Х	High Z	Deselect/Power-Down
L	Н	L	Data Out	Read
L	L	Х	Data In	Write
L	Н	Н	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
35	CYM1946PM-35C	PM47	72-Pin Plastic SIMM Module	Commercial
45	CYM1946PM-45C	PM47	72-Pin Plastic SIMM Module	Commercial
55	CYM1946PM-55C	PM47	72-Pin Plastic SIMM Module	Commercial


Document #: 38-M-00084

Package Diagram

72-Pin Plastic SIMM Module PM47

© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.