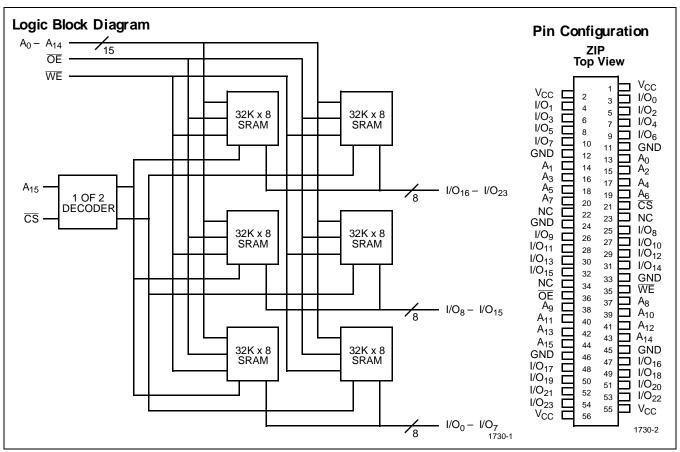


Features

- High-density 1.5M SRAM module
- High-speed CMOS SRAMs
 - Access time of 25 ns
- 56-pin, 0.5-inch-high ZIP package
- · Low active power
 - -2.8W (max. for $t_{AA} = 25$ ns)
- SMD technology
- . TTL-compatible inputs and outputs
- · Commercial temperature range
- Small PCB footprint
 - —1.05 sq. in.

Functional Description

The CYM1730 is a high-performance 1.5M static RAM module organized as 64K words by 24 bits. This module is constructed


64K x 24 Static RAM Module

using six 32K x 8 static RAMs in SOJ packages mounted onto an epoxy laminate board with pins.

Writing to the device is accomplished when the chip select (\overline{CS}) and write enable (\overline{WE}) inputs are both LOW. Data on the input/output pins $(I/O_0$ through $I/O_{23})$ of the device is written into the memory location specified on the address pins $(A_0$ through $A_{15})$.

Reading the device is accomplished by taking the chip select (\overline{CS}) and output enable (\overline{OE}) LOW while write enable (\overline{WE}) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the input/output pins.

The input/output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable is HIGH.

Selection Guide

	1730–25	1730–30	1730–35
Maximum Access Time (ns)	25	30	35
Maximum Operating Current (mA)	510	510	510
Maximum Standby Current (mA)	180	180	180

Maximum Ratings

DC Input Voltage -0.5V to +7.0V

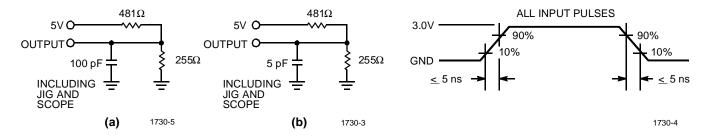
Operating Range

Range	Ambient Range Temperature	
Commercial	0°C to +70°C	5V ± 10%

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage		-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	-20	+20	μΑ
I _{OZ}	Output Leakage Current	$\begin{aligned} &\text{GND} \leq \text{V}_{O} \leq \text{V}_{CC}, \\ &\text{Output Disabled} \end{aligned}$	-10	+10	μΑ
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 mA, \overline{CS} \le V_{IL}$		510	mA
I _{SB1}	Automatic CS Power-Down Current ^[1]	Max. V_{CC} , $\overline{CS} \ge V_{IH}$, Min. Duty Cycle = 100%		180	mA
I _{SB2}	Automatic CS Power-Down Current ^[1]	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CS}} \geq \text{V}_{\text{CC}} - 0.2\text{V}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2\text{V or V}_{\text{IN}} \leq 0.2\text{V} \end{aligned}$		180	mA

Capacitance^[2]


Parameter Description		Test Conditions	Max.	Unit	
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	50	pF	
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	20	pF	

Notes:

- 1. A pull-up resistor to V_{CC} on the \overline{CS} input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.
- Tested on a sample basis.

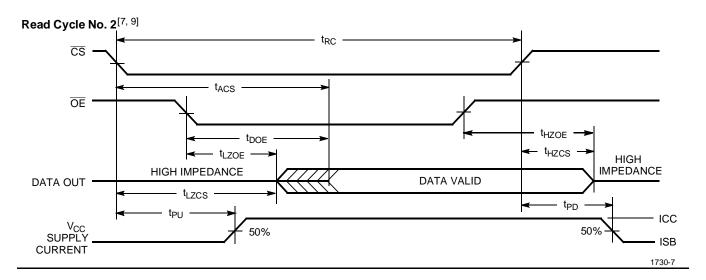
AC Test Loads and Waveforms

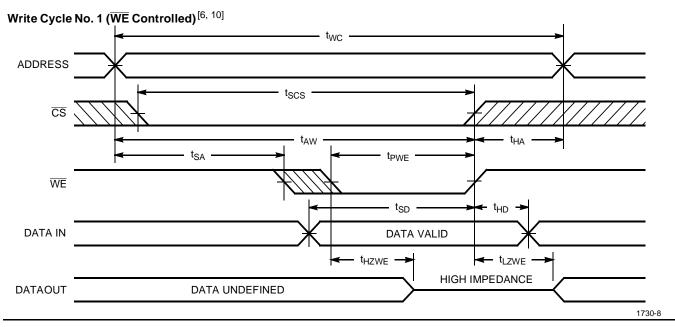
Equivalent to: THÉVENIN EQUIVALENT 1.73V

Switching Characteristics Over the Operating Range^[3]

		1730–25		1730–30		1730–35		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE								
t _{RC}	Read Cycle Time	25		30		35		ns
t _{AA}	Address to Data Valid		25		30		35	ns
t _{OHA}	Output Hold from Address Change	5		5		5		ns
t _{ACS}	CS LOW to Data Valid		25		30		35	ns
t _{DOE}	OE LOW to Data Valid		12		15		20	ns
t _{LZOE}	OE LOW to Low Z	3		3		3		ns
t _{HZOE}	OE HIGH to High Z		10		15		20	ns
t _{LZCS}	CS LOW to Low Z ^[4]	5		5		5		ns
t _{HZCS}	CS HIGH to High Z ^[4, 5]		10		15		15	ns
WRITE CYCLE	[6]							
t _{WC}	Write Cycle Time	25		30		35		ns
t _{SCS}	CS LOW to Write End	20		25		30		ns
t _{AW}	Address Set-Up to Write End	22		25		30		ns
t _{HA}	Address Hold from Write End	2		2		2		ns
t _{SA}	Address Set-Up to Write Start	2		2		2		ns
t _{PWE}	WE Pulse Width	20		23		25		ns
t _{SD}	Data Set-Up to Write End	13		15		20		ns
t _{HD}	Data Hold from Write End	2		2		2		ns
t _{LZWE}	WE HIGH to Low Z	3		3		5		ns
t _{HZWE}	WE LOW to High Z ^[5]	0	10	0	10	0	15	ns

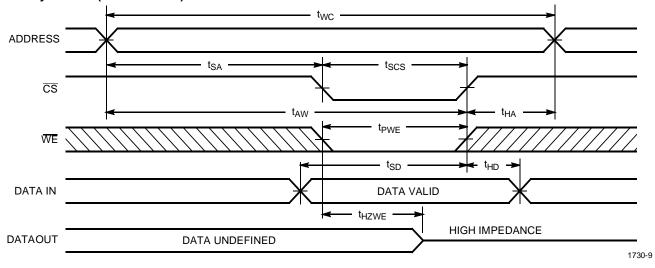
Notes:


- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{OL}/l_{OH} and 30-pF load capacitance.


- The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and write and write and write and write and by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. 6.

Switching Waveforms

Read Cycle No. 1^[7, 8] t_{RC} **ADDRESS** toha DATA OUT PREVIOUS DATA VALID DATA VALID 1730-6


Notes:

- WE is HIGH for read cycle.
 Device is continuously selected, CS = V_{IL} and OE = V_{IL}.
 Address valid prior to or coincident with CS transition LOW.
 Data I/O will be high impedance if OE = V_{IH}.

Switching Waveforms (continued)

Write Cycle No. 2 (CS Controlled) [6, 10, 11]

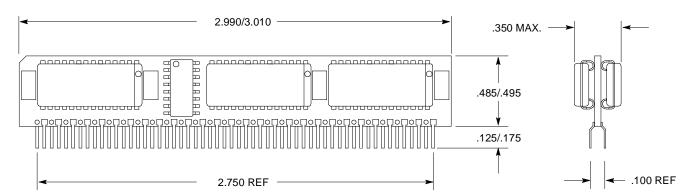
Note:

11. If $\overline{\text{CS}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

Truth Table

CS	WE	OE	Input/Outputs	Mode
Н	Х	Χ	High Z	Deselect/Power-Down
L	Н	L	Data Out	Read Word
L	L	Х	Data In	Write Word
L	Н	Н	High Z	Deselect

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CYM1730PZ-25C	PZ07	56-Pin ZIP Module	Commercial
30	CYM1730PZ-30C	PZ07	56-Pin ZIP Module	Commercial
35	CYM1730PZ-35C	PZ07	56-Pin ZIP Module	Commercial

Document #: 38-M-00049-A

Package Diagram

56-Pin ZIP Module PZ07

[©] Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfurnor or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.