CYM1838

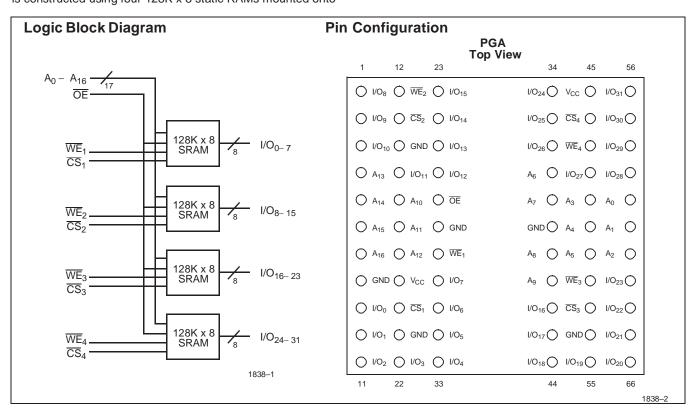
PRELIMINARY

128K x 32 Static RAM Module

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
 - Access time of 20 ns
- 66-pin, 1.1-inch-square PGA package
- Low active power
 - -4.0W (max.)
- Hermetic SMD technology
- . TTL-compatible inputs and outputs
- · Commercial and military temperature ranges

Functional Description


The CYM1838 is a very high performance 4-megabit static RAM module organized as 128K words by 32 bits. The module is constructed using four 128K x 8 static RAMs mounted onto

a multilayer ceramic substrate. Four chip selects $(\overline{CS}_1, \overline{CS}_2, \overline{CS}_3, \overline{CS}_4)$ are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.

Writing to each byte is accomplished when the appropriate chip selects (\overline{CS}) and write enable (\overline{WE}) inputs are both LOW.Data on the input/output pins (I/O_χ) is written into the memory location specified on the address pins $(A_0$ through $A_{16})$.

Reading the device is accomplished by taking chip selects LOW while write enable remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins.

The data input/output pins remain in a high-impedance state when write enable is LOW or the appropriate chip selects are HIGH.

Selection Guide

		1838-20	1838-25	1838-35
Maximum Access Time (ns)		20	25	35
Maximum Operating Current (mA)	Commercial	720	720	
	Military	720	720	720
Maximum Standby Current (mA)	Commercial	240	240	
	Military	240	240	240

Maximum Ratings

(Above which the useful life may be impaired.)

Storage Temperature-65°C to +150°C

Supply Voltage to Ground Potential-0.5V to +7.0V

DC Voltage Applied to Outputs
in High Z State-0.5V to +7.0V

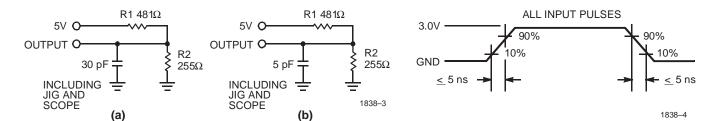
DC Input Voltage-0.5V to +7.0V

Operating Range

Range	Ambient Temperature	V _{CC}		
Commercial	0°C to +70°C	5V ± 10%		
Military	–55°C to +125°C	5V ± 10%		

Electrical Characteristics Over the Operating Range

			1838		
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.2	6.0	V
V _{IL}	Input LOW Voltage		-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}, V_{CC} = Max.$	-20	+20	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	-10	+10	μΑ
I _{CCx32}	V _{CC} Operating Supply Current by 32 Mode	$V_{CC} = Max., I_{OUT} = 0 \text{ mA}, \overline{CS} \le V_{IL}$		720	mA
I _{CCx16}	V _{CC} Operating Supply Current by 16 Mode	$V_{CC} = Max., I_{OUT} = 0 \text{ mA}, \overline{CS} \le V_{IL}$		480	mA
I _{CCx8}	V _{CC} Operating Supply Current by 8 Mode	$V_{CC} = Max., I_{OUT} = 0 \text{ mA}, \overline{CS} \le V_{IL}$		360	mA
I _{SB1}	Automatic CS Power-Down Current ^[1]	Max. V _{CC} ; $\overline{\text{CS}}$ ≥ V _{IH} , Min. Duty Cycle = 100%		240	mA
I _{SB2}	Automatic CS Power-Down Current ^[1]	$\begin{aligned} &\text{Max. V}_{\text{CC}}; \overline{\text{CS}} \geq \text{V}_{\text{CC}} - 0.2\text{V}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2\text{V or V}_{\text{IN}} \leq 0.2\text{V} \end{aligned}$		40	mA

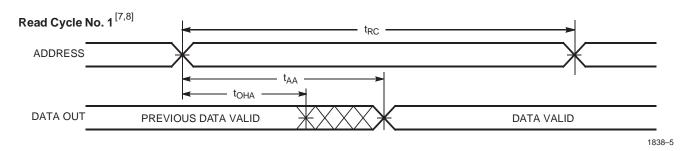

Capacitance^[2]

Parameter	Description Test Conditions		Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	50	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	50	pF

Notes:

- 1. A pull-up resistor to V_{CC} on the $\overline{\text{CS}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.
- 2. Tested on a sample basis.

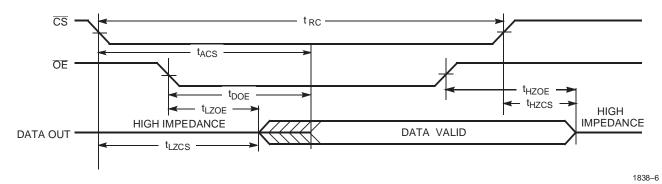
AC Test Loads and Waveforms


Equivalent to: THÉVENIN EQUIVALENT

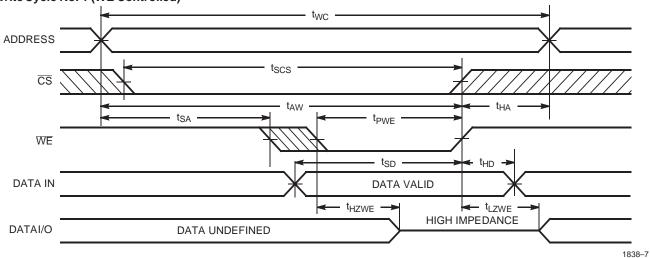
Switching Characteristics Over the Operating Range [3]

		1838-20 1838-25 Min. Max. Min. Max.		1838-25		1838-35		
Parameter	Description			Max.	Min.	Max.	Unit	
READ CYCLE			•	•	•	•	•	
t _{RC}	Read Cycle Time	20		25		35		ns
t _{AA}	Address to Data Valid		20		25		35	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACS}	CS LOW to Data Valid		20		25		35	ns
t _{DOE}	OE LOW to Data Valid		10		12		15	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z		10		10		20	ns
t _{LZCS}	CS LOW to Low Z ^[4]	0		0		0		ns
t _{HZCS}	CS HIGH to High Z ^[4,5]		12		15		20	ns
WRITE CYCLE	[6]							
t _{WC}	Write Cycle Time	20		25		35		ns
t _{SCS}	CS LOW to Write End	15		20		30		ns
t _{AW}	Address Set-Up to Write End	15		20		30		ns
t _{HA}	Address Hold from Write End	1.5		1.5		1.5		ns
t _{SA}	Address Set-Up to Write Start	2.0		2.0		2.0		ns
t _{PWE}	WE Pulse Width	15		17		25		ns
t _{SD}	Data Set-Up to Write End	10		12		15		ns
t _{HD}	Data Hold from Write End	2		2		2		ns
t _{LZWE}	WE HIGH to Low Z	0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[5]	0	10	0	10	0	15	ns

Switching Waveforms


Notes

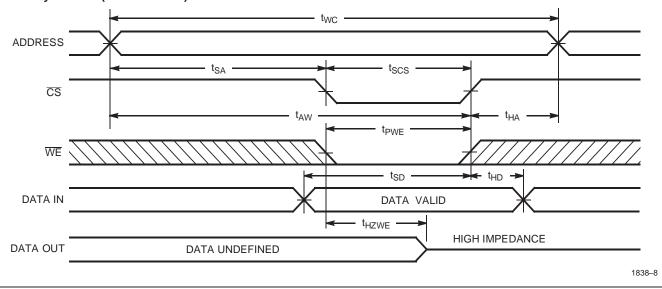
- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- At any given temperature and voltage condition, t_{HZCS} is less than t_{LZCS} for any given device. These parameters are guaranteed by design and not 100% tested.
- t_{HZCS} and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads and Waveforms. Transition is measured ±500 mV from steady-state voltage.
 The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can
- The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal ca terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 WE_N is HIGH for read cycle.
- 8. Device is continuously selected, $\overline{CS} = V_{IL}$ and $\overline{OE} = V_{IL}$.



Switching Waveforms (continued)

Read Cycle No. 2 [7,9]

Write Cycle No. 1 (WE Controlled) [6,10]


Note:

- Address valid prior to or coincident with Stransition LOW.
 Data I/O will be high impedance if SE = V_{IH}.

Switching Waveforms (continued)

Write Cycle No. 2 (CS Controlled) [6,10, 11]

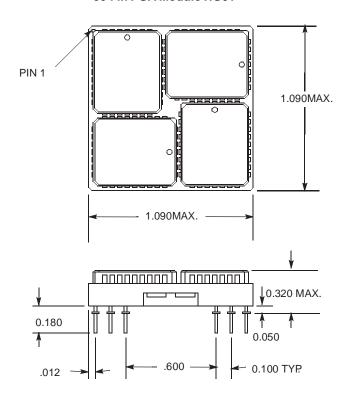
Note:

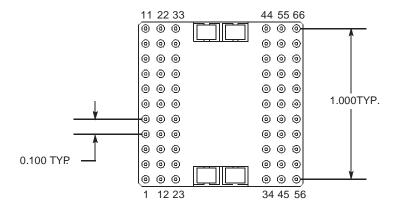
Truth Table

CS _N	ŌΕ	WEN	Input/Output	Mode
Н	X	Х	High Z	Deselect/Power-Down
L	L	Н	Data Out	Read
L	Х	L	Data In	Write
L	Н	Н	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CYM1838HG-20C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-20M	HG01	66-Pin PGA Module	Military
	CYM1838HG-20MB	HG01	66-Pin PGA Module	
25	CYM1838HG-25C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-25M	HG01	66-Pin PGA Module	Military
	CYM1838HG-25MB	HG01	66-Pin PGA Module	
35	CYM1838HG-35C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-35M	HG01	66-Pin PGA Module	Military
	CYM1838HG-35MB	HG01	66-Pin PGA Module	


Document #: 38-M-00046-C


^{11.} If $\overline{\text{CS}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

Package Diagram

66-Pin PGA Module HG01

[©] Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfurnion or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.