TOSHIBA TA7376P

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA7376P

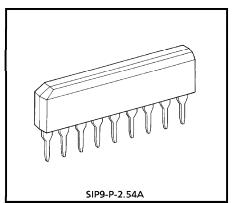
AUDIO POWER AMPLIFIER

The TA7376P is dual audio power amplifier for portable products.

FEATURES

• Low operating supply voltage : $V_{CC} = 1.8 \sim 6V$ (Ta = 25°C)

Low quiescent current : ICCO = 5.3mA

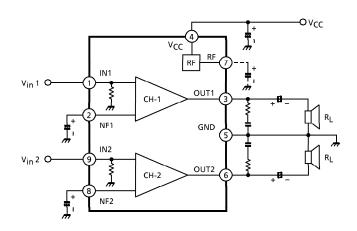

 $(V_{CC} = 4.5V)$

Including ripple filter circuit : RR = −42dB

 $(C_{RJP} = 10 \mu F, f_r = 100 Hz)$

• Voltage gain : $G_V = 39.5 dB$ (Typ.)

Very few external parts and small package. (SIP-9PIN)



Weight: 0.92g (Typ.)

OUTPUT POWER TABLE (THD = 10%, f = 1kHz, Stereo, Typ. value)

V _{CC} LOAD	$R_L = 32\Omega$	$R_L = 16\Omega$	$R_L = 8\Omega$	$R_L = 4\Omega$
3V	21mW	38mW	65mW	100mW
4.5V	56mW	100mW	180mW	300mW
6V	120mW	230mW	400mW	

BLOCK DIAGRAM

961001EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

APPLICATION NOTE

1. Input stage

The input stage of power amplifier (Equivalent Circuit) is comprised of a PNP differential pair (Q_2 and Q_3) preceded by a PNP emitter follower (Q_1) which allows DC referencing of the source signal to ground.

This eliminates the need for an input coupling condenser. However, in case the brush noise of volume becomes a problem, provide serially a coupling condenser to the input side.

2. Adjustment of voltage gain

The voltage gain is fixed at $G_V = 40$ dB by the resistors (R_1 and R_2) in IC, however, its reduction is possible through adding R_f as shown in Fig.2.

In this case, the voltage gain is obtained by the following equation.

$$G_V = 20 log \frac{R_1 + R_2 + R_f}{R_1 + R_f}$$

It is recommended to use this IC with the voltage gain of $G_V = 30 dB$ or over.

3. Ripple rejection ratio (RR)

If the TA7376P does not have the ripple filter condenser (C_{RIP}), the ripple rejection ratio is as follow.

RR =
$$-25$$
dB (Typ.)
(C_{NF} = 22μ F, f_r = 100 Hz)
RR = -34 dB (Typ.)
(C_{NF} = 100μ F, f_r = 100 Hz)

If the ripple filter condenser is connected to the pin $\$ 7, the ripple rejection ratio is improved as following the DATA (RR – f_r).

4. Pop sound

It must be connected the condenser (C_{RIP}) from pin \mathfrak{T} to GND, if the "Pop" sound is harshness. In this case, the value is $10\mu\mathrm{F}$ something.

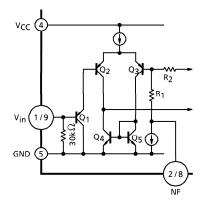


Fig.1

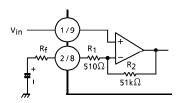


Fig.2

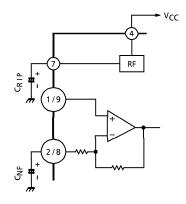


Fig.3

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

1997-07-07 2/7

5. Phase-compensation

The purpose of condenser C_1 is to prevent oscillation. These condenser need to be small temperature coefficient and excellent frequency characteristic. So ceramic condenser is unsuitable.

Condenser C_2 is rather large value than $10\mu F$ and GND line is better to short and wide lay-out so that the some common impedance are decreased.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	8	V
Power Dissipation	P _D (Note)	950	mW
Operation Temperature	T _{opr}	- 25∼75	°C
Storage Temperature	T _{stg}	- 55∼150	°C

(Note) Derated above Ta = 25°C in the proportion of 7.6mW/°C.

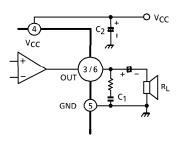
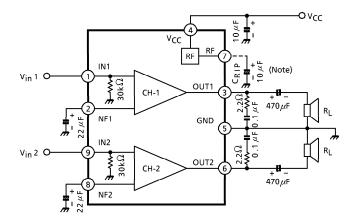


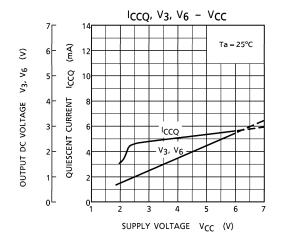
Fig.4

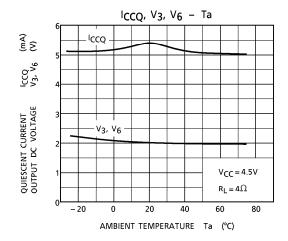
ELECTRICAL CHARACTERISTICS

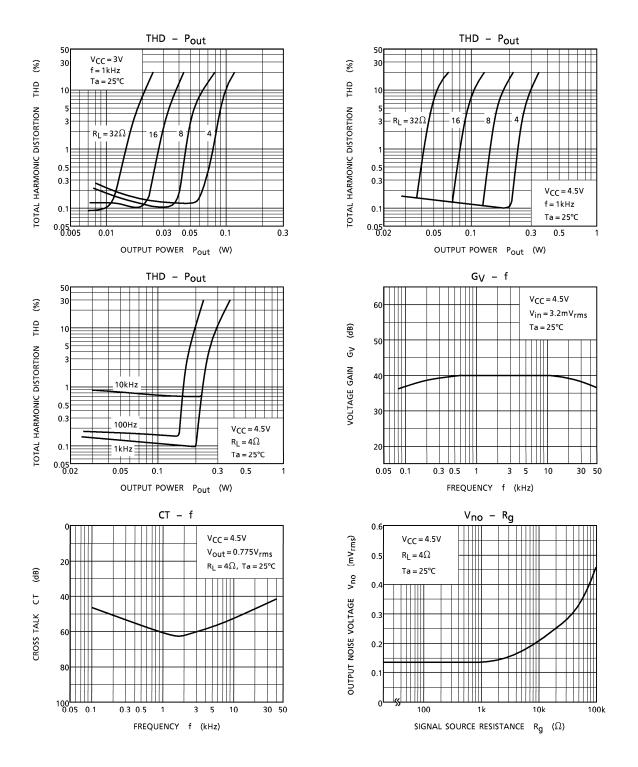
(Unless otherwise specified, V_{CC} = 4.5V, f = 1kHz, R_g = 600 Ω , R_L = 4 Ω , Ta = 25°C)

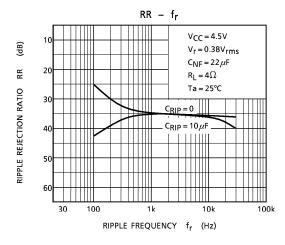

•	, ,,	•	, a , r				
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
			$V_{in} = 0$, $V_{CC} = 3V$	_	4.9	8.0	
Quiescent Current	lccQ	_	V _{in} = 0	_	5.3	10.0	mA
			$V_{in} = 0$, $V_{CC} = 6V$	_	5.7	14.0]
	Pout	_	$V_{CC} = 3V$, $R_L = 4\Omega$, $THD = 10\%$	84	100	_	
			$V_{CC} = 3V$, $R_{L} = 32\Omega$, $THD = 10\%$	_	21	_	
Output Power			$V_{CC} = 4.5V$, $R_{L} = 4\Omega$, THD = 10%	250	300	_	mW
			$V_{CC} = 4.5V$, $R_{L} = 8\Omega$, THD = 10%	_	180	_	
			$V_{CC} = 6V$, $R_L = 8\Omega$, $THD = 10\%$	400	_		
Total Harmonic	THD		B . = 100m\M		0.11	1.0	%
Distortion	ן יחט	_	P _{out} = 100mW	_	0.11	1.0	70
Voltage Gain	GV	_	$V_{out} = 0.775V_{rms}$	37.5	39.5	41.5	dB
Output Noise Voltage	V _{no}	_	$R_g = 10k\Omega$, BPF = 20Hz~20kHz	_	0.21	0.7	mV_{rms}
Ripple Rejection Ratio	RR	_	$C_{RIP} = 10 \mu F$, $C_{NF} = 22 \mu F$		- 42	- 30	- dB
			$f_r = 100 Hz, V_r = 0.38 V_{rms}$	_			
			$C_{RIP} = OPEN, C_{NF} = 100 \mu F$		- 34		
			$f_r = 100Hz, V_r = 0.38V_{rms}$	_			
Cross Talk	СТ	_	$V_{out} = 0.775V_{rms}$	_	- 60	- 40	dB
Input Resistance	R _{IN}	I —	_		30		kΩ

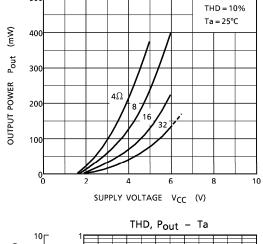
QUIESCENT TERMINAL DC VOLTAGE ($V_{CC} = 4.5V$, Ta = 25°C, Typ. value)

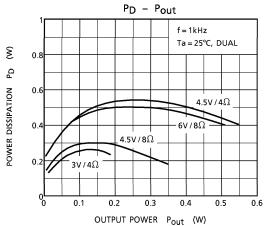

(UNIT:V)

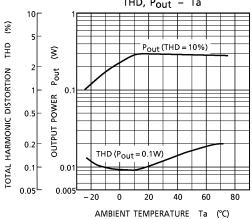

					• •				
TERMINAL	1	2	3	4	5	6	7	8	9
VOLTAGE (V)	0.003	0.59	1.98	4.5	0	1.98	1.28	0.59	0.003

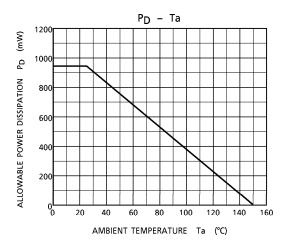

TEST CIRCUIT




(Note) $C_{\mbox{RIP}}$ is shown in item 3 and 4 of APPLICATION NOTE.

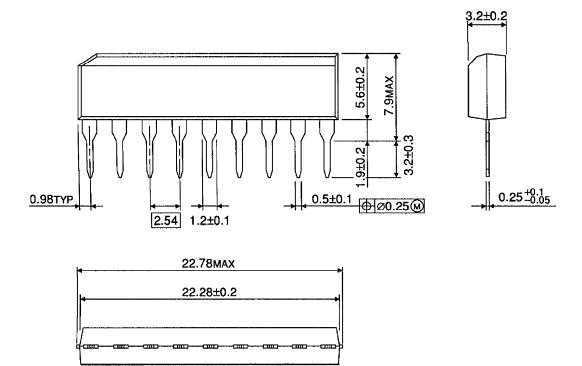






 P_{out} - V_{CC}

500



OUTLINE DRAWING SIP9-P-2.54A

Unit: mm

Weight: 0.92g (Typ.)