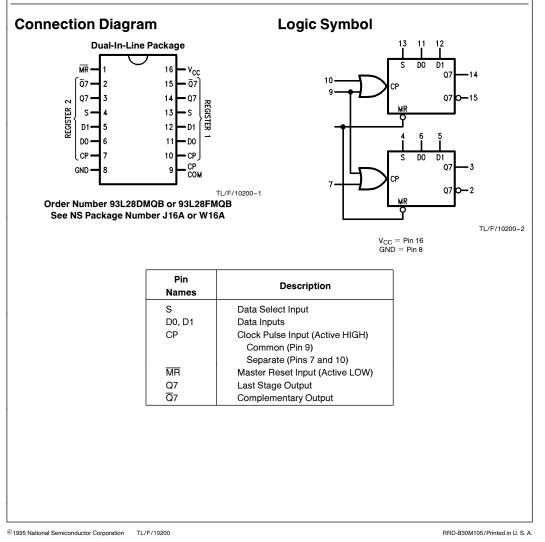


93L28 Dual 8-Bit Shift Register

General Description


The 93L28 is a high speed serial storage element providing 16 bits of storage in the form of two 8-bit registers. The multifunctional capability of this device is provided by several features: 1) additional gating is provided at the input to both shift registers so that the input is easily multiplexed between two sources; 2) the clock of each register may be provided separately or together; 3) both the true and complementary outputs are provided from each 8-bit register, and both registers may be master cleared from a common input.

Features

- 2-input multiplexer provided at data input of each register
- Gated clock input circuitry
- Both true and complementary outputs provided from last bit of each register
- Asynchronous master reset common to both registers

93L28 Dual 8-Bit Shift Register

June 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
MIL	-55°C to +125°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol Parameter	Parameter	93L28 (MIL)			Units
Symbol	Falameter	Min Nom		Max	
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.7	V
I _{OH}	High Level Output Current			-400	μΑ
I _{OL}	Low Level Output Current			4.8	mA
T _A	Free Air Operating Temperature	-55		125	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW D _n to CP	30 30			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW D _n to CP	0 0			ns
t _w (H) t _w (L)	Clock Pulse Width HIGH or LOW	55 55			ns
t _w (L)	MR Pulse Width with CP HIGH	60			ns
t _w (L)	MR Pulse Width with CP LOW	70			ns

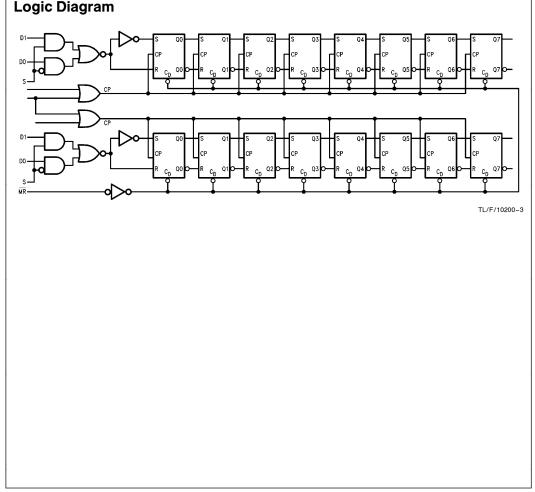
VolVil = Max, Vil = MinZ.4VolLow Level Output Voltage $V_{CC} = Min, I_{OL} = Max, V_{IH} = Min, V_{IL} = Max$ 0.3InInput Current @ Max Input Voltage $V_{CC} = Max, V_I = 5.5V$ 1Input Voltage $V_{CC} = Max, V_I = 5.5V$ 1Input Voltage $V_{CC} = Max, V_I = 2.4V$ \overline{MR}, Dx 20Input Current $V_{CC} = Max, V_I = 2.4V$ \overline{MR}, Dx 20Input Current $V_{CC} = Max, V_I = 2.4V$ \overline{MR}, Dx 40Input Current $V_{CC} = Max, V_I = 0.3V$ \overline{MR}, Dx -400Input Current $V_{CC} = Max, V_I = 0.3V$ \overline{MR}, Dx -400Input Current $V_{CC} = Max, V_I = 0.3V$ \overline{MR}, Dx -400Input Current $V_{CC} = Max, V_I = 0.3V$ \overline{MR}, Dx -400Input Current $V_{CC} = Max, V_I = 0.3V$ \overline{MR}, Dx -2.5IosShort Circuit Output Current $V_{CC} = Max$ (Note 2)-2.5-25
$\begin{array}{ c c c c c c } \hline V_{IL} & Max, V_{IH} & Min & 2.4 & 0.3 \\ \hline V_{OL} & Low Level Output Voltage & V_{CC} & Min, I_{OL} & Max, \\ V_{IH} & Min, V_{IL} & Max & 0.3 \\ \hline I_{II} & Input Current @ Max \\ Input Voltage & V_{CC} & Max, V_{I} & 5.5V & 1 \\ \hline I_{II} & HIGH Level \\ Input Current & V_{CC} & Max, V_{I} & 2.4V & \hline MR, Dx & 20 \\ \hline CP (7, 10) & 30 \\ \hline S & 40 \\ \hline CP Com & 60 \\ \hline S & -40 \\ \hline CP Com & 60 \\ \hline S & -40 \\ \hline CP Com & -60 \\ \hline S & -60 \\ \hline CP Com & -120 \\ \hline MR, Dx & -400 \\ \hline CP Com & -120 \\ \hline MR, Dx & -400 \\ \hline CP Com & -1200 \\ \hline MR, Dx & -400 \\ \hline CP Com & -1200 \\ \hline MR Dx & -2.5 & -25 \\ \hline CP Com & -1200 \\ \hline MR Dx & -2.5 & -25 \\ \hline CP Com & -1200 \\ \hline Mos & Short Circuit & V_{CC} & Max \\ Output Current & V_{CC} & Max \\ \hline MR Dx & -2.5 & -25 \\ \hline CP Com & -1200 \\ \hline Mos & Short Circuit & V_{CC} & Max \\ \hline Output Current & V_{CC} & Max \\ \hline Mos 1: All typicals are at V_{CC} & 5V, T_A & 25'C. \\ \hline Note 1: All typicals are at V_{CC} & 5V, T_A & 25'C. \\ \hline Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. \\ \hline \hline Sumbol & Parameter & C_L & 15 pF \\ \hline Min & Max \\ \hline \hline Min & Max \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \begin{array}{ c c c c } \hline V_{IH} = Min, V_{IL} = Max & 0 & 0.3 \\ \hline V_{IH} = Min, V_{IL} = Max & 0 & 0.3 \\ \hline Input Current @ Max \\ Input Voltage & V_{CC} = Max, V_{I} = 5.5V & 1 & 1 \\ \hline IH & HIGH Level \\ Input Current & V_{CC} = Max, V_{I} = 2.4V & \hline MR, Dx & 20 \\ \hline CP (7, 10) & 30 \\ \hline S & 40 \\ \hline CP Com & 60 \\ \hline CP Com & 60 \\ \hline CP Com & 60 \\ \hline CP (7, 10) & -600 \\ \hline S & 0 & -400 \\ \hline CP (7, 10) & -600 \\ \hline S & 0 & -800 \\ \hline CP Com & -1200 \\ \hline OS & Short Circuit \\ Output Current & V_{CC} = Max \\ Output Current & V_{CC} = Max \\ \hline Output Current & V_{CC} = Max \\ \hline OP Com & -1200 \\ \hline OS & Short Circuit \\ Output Current & V_{CC} = Max \\ Output Current & V_{CC} = Max \\ \hline OP Com & -1200 \\ \hline OS & Short Circuit \\ Output Current & V_{CC} = Max \\ \hline Output Current & V_{CC} = Max \\ \hline Output Current & V_{CC} = Max \\ \hline OP Com & -1200 \\ \hline OS & Short Circuit \\ Output Current & V_{CC} = Max \\ \hline OV_{CC} = Max & -2.5 \\ \hline OP Com & -1200 \\ \hline OP C$
$\begin{tabular}{ c c c c } \hline Input Voltage & I & I & I & I \\ \hline Input Ourrent & V_{CC} = Max, V_I = 2.4V & \hline MR, Dx & 20 & \hline CP (7, 10) & 30 & \hline S & 40 & \hline CP (7, 10) & 60 & \hline 0 & 60 & \hline 0 & \hline CP (7, 10) & -600 & \hline 0 & 60 & \hline 0 & \hline 0$
$\begin{tabular}{ c c c c c } \label{eq:cp} & \hline CP (7, 10) & \hline & 30 \\ \hline S & \hline & 40 \\ \hline S & \hline & 40 \\ \hline CP Com & \hline & 60 \\ \hline \\ \end{tabular}$
$\begin{array}{ c c c c c } \hline \begin{array}{ c c c c } \hline \begin{array}{ c } \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \begin{array}{ c } \hline \begin{array}{ c } \hline \begin{array}{ c } \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c } \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c } \hline \begin{array}{ c } \hline \begin{array}{ c } \hline \begin{array}{ c } \hline \end{array} $
$\begin{tabular}{ c c c c c } \hline U & U & U & U & U & U & U & U & U & U$
$\begin{tabular}{ c c c c } & LOW Level \\ Input Current & V_{CC} = Max, V_{I} = 0.3V & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$\begin{tabular}{ c c c c c } \hline \end{tabular} tabula$
$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{tabular}{ c c c c c c } \hline CP \ Com & -1200 & -1200 \\ \hline CP \ Com & -2.5 & -2$
$\begin{tabular}{ c c c c c c } \hline l_{OS} & Short Circuit & V_{CC} = Max & -2.5 & -25 & \\ \hline Output Current & V_{CC} = Max & 25.3 & \\ \hline l_{CC} & Supply Current & V_{CC} = Max & 25.3 & \\ \hline Note 1: All typicals are at V_{CC} = 5V, T_A = 25^\circ C. & \\ \hline Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. & \\ \hline Switching Characteristics & \\ V_{CC} = +5.0V, T_A = +25^\circ C (See Section 1 for test waveforms and output load) & \\ \hline Symbol & Parameter & C_L = 15 pF & Unit & \\ \hline Min & Max & \\ \hline f_{max} & Maximum Shift Right Frequency & 5.0 & MH & \\ \hline t_{PLH} & Propagation Delay & 45 & \\ \hline Note 1: All typicals are at V_{CC} = 15 pF & NH & \\ \hline Min & Max & MH & \\ \hline Min & Max & MH & \\ \hline Min & Max & MH & \\ \hline Min & MH & NH & \\ \hline Min & MH & \\ \hline Min & MH & \\ \hline Min & MH & \\ \hline MH & MH & \\ \hline MH & MH & \\ \hline MH & MH & \\ \hline MH & \\ \hline MH & MH & \\ \hline M$
Output Current (Note 2) -2.5 -25 I _{CC} Supply Current V _{CC} = Max 25.3 Note 1: All typicals are at V _{CC} = 5V, T _A = 25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Switching Characteristics Switching Characteristics V _{CC} = + 5.0V, T _A = + 25°C (See Section 1 for test waveforms and output load) Unit Symbol Parameter C _L = 15 pF Unit fmax Maximum Shift Right Frequency 5.0 MH tP _{LH} Propagation Delay 45 ns
Note 1: All typicals are at V _{CC} = 5V, T _A = 25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Switching Characteristics V _{CC} = +5.0V, T _A = +25°C (See Section 1 for test waveforms and output load) Unit Min Max Minin Max Minin Max fmax Maximum Shift Right Frequency 5.0 MH tPLH Propagation Delay 45 ns
Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Switching Characteristics $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$ (See Section 1 for test waveforms and output load) Unit Symbol Parameter Min Max fmax Maximum Shift Right Frequency 5.0 MH tpLH Propagation Delay 45 ns
Min Max f _{max} Maximum Shift Right Frequency 5.0 MH t _{PLH} Propagation Delay 45 ns
t _{PLH} Propagation Delay 45 ns
ns ns
t _{PHL} Propagation Delay MR to Q ₇ 110 ns

Functional Description

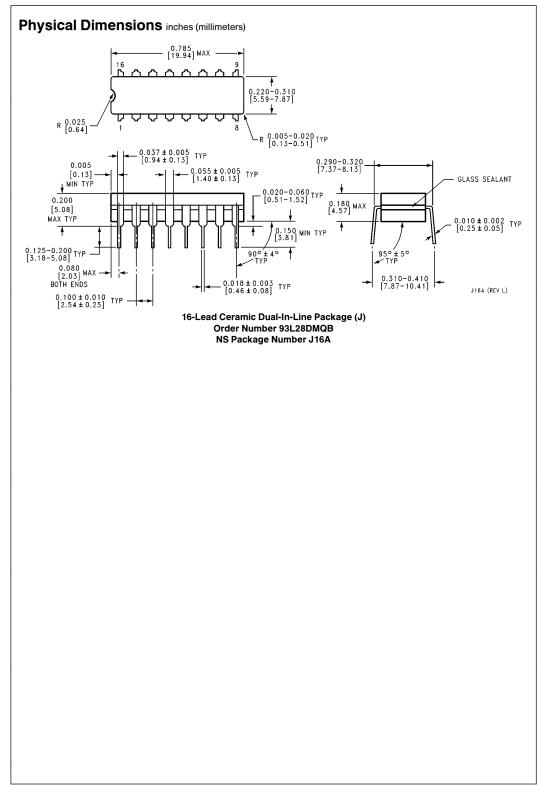
The two 8-bit shift registers have a common clock input (pin 9) and separate clock inputs (pins 10 and 7). The clocking of each register is controlled by the OR function of the separate and the common clock input. Each register is composed of eight clocked RS master/slave flip-flops and a number of gates. The clock OR gate drives the eight clock inputs of the flip-flops in parallel. When the two clock inputs (the separate and the common) to the OR gate are LOW. the slave latches are steady, but data can enter the master latches via the R and S input. During the first LOW-to-HIGH transition of either, or both simultaneously, of the two clock inputs, the data inputs (R and S) are inhibited so that a later change in input data will not affect the master; then the now trapped information in the master is transferred to the slave. When the transfer is complete, both the master and the slave are steady as long as either or both clock inputs remain HIGH. During the HIGH-to-LOW transition of the last remaining HIGH clock input, the transfer path from master to slave is inhibited first, leaving the slave steady in its present state. The data inputs (R and S) are enabled so that new data can enter the master. Either of the clock inputs can be used as clock inhibit inputs by applying a logic HIGH signal. Each 8-bit shift register has a 2-input multiplexer in front of the serial data input. The two data inputs D0 and D1 are controlled by the data select input (S) following the Boolean expression:

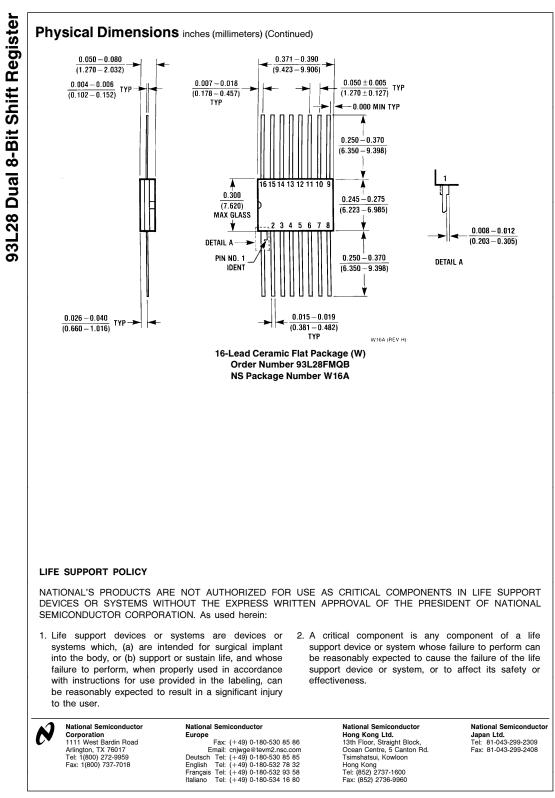
Serial data in: $S_D = SD0 + SD1$

An asynchronous master reset is provided which, when activated by a LOW logic level, will clear all 16 stages independently of any other input signal.


Shift	Select	Table
-------	--------	-------

	Inputs		Output
s	D0	D1	Q7 (t _{n + 8})
L	L	Х	L
L	н	х	н
н	Х	L	L
н	Х	Н	Н


H = HIGH Voltage Level L = LOW Voltage Level


X = Immaterial

n+8 = Indicates state after eight clock pulse

4

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.