54ABT574 Octal D-Type Flip-Flop with TRI-STATE Outputs

National Semiconductor

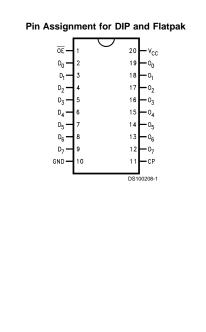
54ABT574 Octal D-Type Flip-Flop with TRI-STATE[®] Outputs

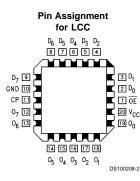
General Description

The 'ABT574 is an octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable (\overline{OE}). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The device is functionally identical to the 'ABT374 except for the pinouts.

Features


- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 'ABT374


- TRI-STATE outputs for bus-oriented applicationsOutput sink capability of 48 mA, source capability of
- 24 mA
- Guaranteed multiple output switching specifications
 Output switching specified for both 50 pF and 250 pF loads
- Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability
- Standard Microcircuit Drawing (SMD) 5962-9322001

Ordering Code

Military	Package Number	Package Description
54ABT574J/883	J20A	20-Lead Ceramic Dual-In-Line
54ABT574W/883	W20A	20-Lead Cerpack
54ABT574E/883	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Connection Diagrams

Pin Descriptions

Description		
Data Inputs		
Clock Pulse Input		
(Active Rising Edge)		
TRI-STATE Output Enable		
Input (Active LOW)		
TRI-STATE Outputs		

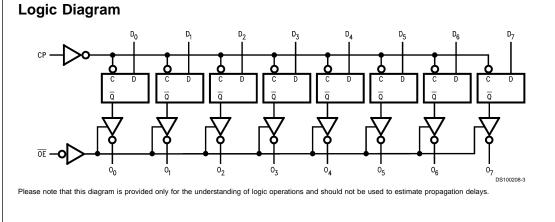
FAST® and TRI-STATE® are registered trademarks of National Semiconductor Corporation.

© 1998 National Semiconductor Corporation DS100208

Functional Description

The 'ABT574 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs are in a high impedance state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the flip-flops.

Function Table


	Inputs		Internal	Outputs	Function
OE	СР	D	Q	0	
Н	H or L	L	NC	Z	Hold

Inputs		Internal	Outputs	Function		
OE	СР	D	Q	0		
н	H or L	Н	NC	Z	Hold	
н	~	L	L	Z	Load	
н	~	Н	н	Z	Load	
L	~	L	L	L	Data Available	
L	~	Н	н	н	Data Available	
L	H or L	L	NC	NC	No Change in Data	
L	H or L	н	NC	NC	No Change in Data	

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Z = High Impedance $\sim =$ LOW-to-HIGH Transition NC = No Change

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	
Ceramic	–55°C to +175°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output in	
the Disabled or Power-Off State	-0.5V to 5.5V
in the HIGH State	–0.5V to $V_{\rm CC}$
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
DC Latchup Source Current	–500 mA

Over Voltage Latchup (I/O)

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	-55°C to +125°C
Supply Voltage	
Military	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V / \Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns
Clock Input	100 mV/ns
Note 1: Absolute maximum ratings are values bey	ond which the device may
be damaged or have its useful life impaired. Functio conditions is not implied.	nal operation under these

10V

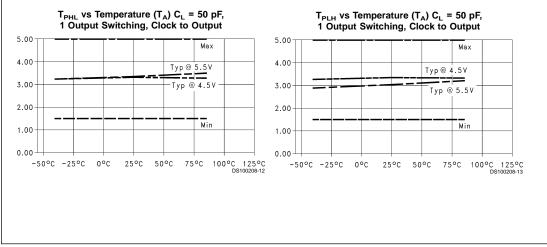
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

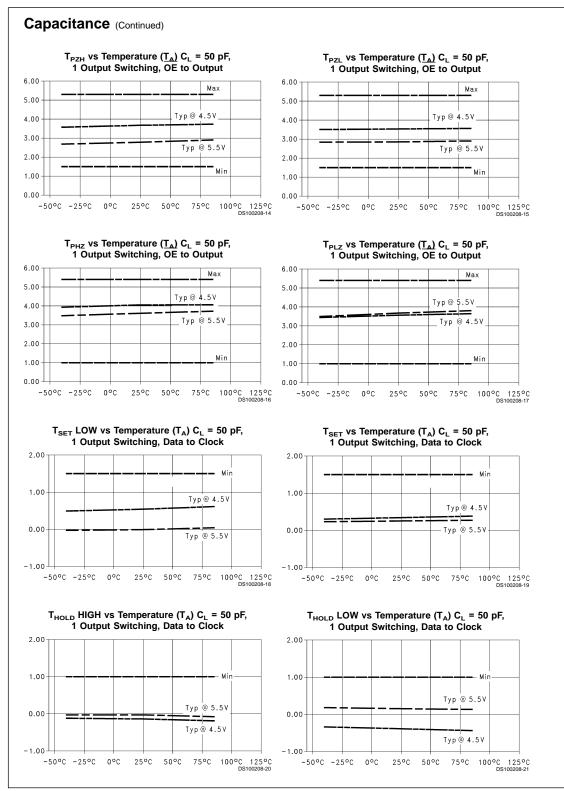
DC Electrical Characteristics

Symbol	Parameter		ABT574			Units	V _{cc}	Conditions
			Min	Тур	Max	1		
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{он}	Output HIGH Voltage	54ABT	2.5			V	Min	I _{OH} = -3 mA
		54ABT	2.0			V	Min	I _{OH} = -24 mA
VoL	Output LOW Voltage	54ABT			0.55	V	Min	I _{OL} = 48 mA
IIH	Input HIGH Current				5	μA	Max	V _{IN} = 2.7V (Note 4)
					5			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Br	eakdown Test			7	μA	Max	V _{IN} = 7.0V
I _{IL}	Input LOW Current				-5	μA	Max	V _{IN} = 0.5V (Note 4)
					-5			$V_{IN} = 0.0V$
VID	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OZH}	Output Leakage Current				50	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE} = 2.0V$
I _{OZL}	Output Leakage Current				-50	μA	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE} = 2.0V$
los	Output Short-Circuit C	urrent	-100		-275	mA	Max	V _{OUT} = 0.0V
I _{CEX}	Output High Leakage	Current			50	μA	Max	$V_{OUT} = V_{CC}$
Izz	Bus Drainage Test				100	μA	0.0	V _{OUT} = 5.5V; All Other GND
I _{CCH}	Power Supply Current				50	μA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW
I _{ccz}	Power Supply Current				50	μA	Max	$\overline{OE} = V_{CC}$
								All Others at V_{CC} or GND
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_{I} = V_{CC} - 2.1V$
		Outputs TRI-STATE			2.5	mA	Max	Enable Input $V_I = V_{CC} - 2.1V$
		Outputs TRI-STATE			2.5	mA		Data Input V _I = V _{CC} – 2.1V
								All Others at V_{CC} or GND
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Max	Outputs Open, $\overline{OE} = GND$,
	(Note 4)				0.30	MHz		One Bit Toggling (Note 3),
								50% Duty Cycle

Note 4: Guaranteed, but not tested.

Symbol	Parameter	$T_{A} = -55^{\circ}C$ $V_{CC} = 4.5$	Units	
		C _L = 50 pF		
		Min	Max	1
max	Max Clock Frequency	150		MHz
PLH	Propagation Delay	1.5	7.0	ns
PHL	CP to O _n	1.5	7.4	
PZH	Output Enable Time	1.0	6.5	ns
PZL		1.0	7.2	
PHZ	Output Disable Time	1.0	7.2	ns
PLZ		1.0	6.7	

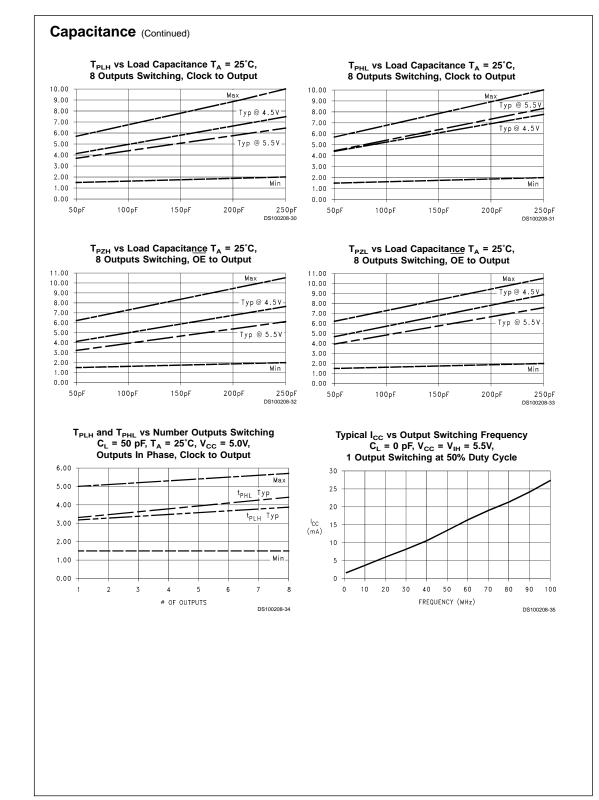

AC Operating Requirements


Symbol	Parameter		Units	
		Min	Max]
t _s (H)	Setup Time, HIGH	1.5		ns
t _s (L)	or LOW D _n to CP	2.0		
t _h (H)	Hold Time, HIGH	2.0		ns
t _h (L)	or LOW D _n to CP	2.0		
t _w (H)	Pulse Width, CP,	3.3		ns
t _w (L)	HIGH or LOW	3.3		

Capacitance

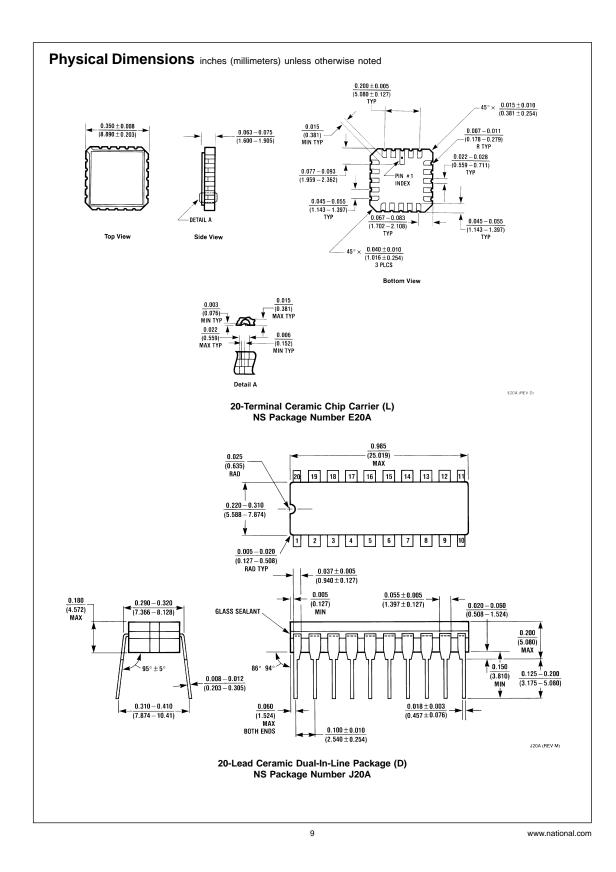
Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{\rm CC} = 0V$
C _{OUT} (Note 5)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$

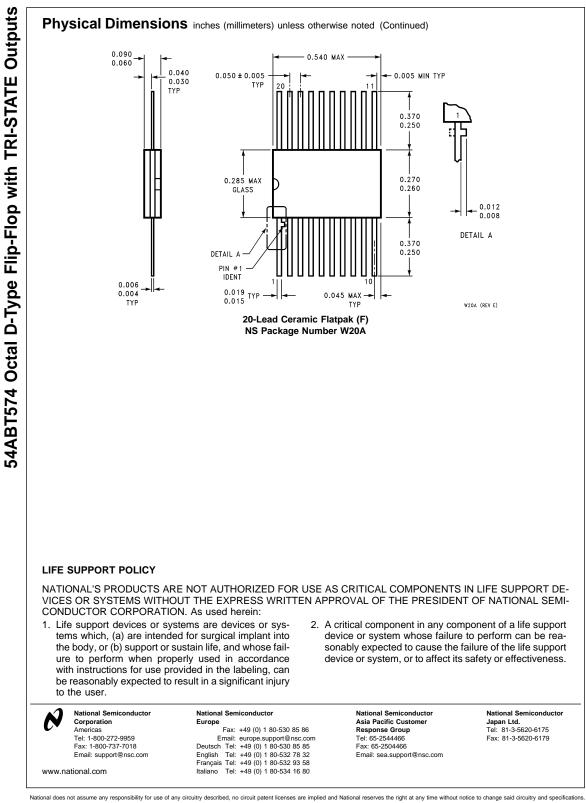
Note 5: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.



www.national.com

6




www.national.com

7

8

