

54LS168 Synchronous Bi-Directional **BCD Decade Counter**

General Description

The 54LS168 is a fully synchronous 4-state up/down counter featuring a preset capability for programmable operation, carry lookahead for easy cascading and a U/\overline{D} input to control the direction of counting. It counts in the BCD (8421) sequence and all state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the clock.

© 1995 National Semiconductor Corporation TL/F/10207 RRD-B30M105/Printed in U. S. A.

June 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
54LS	-55°C to +125°C
Storage Temperature Range	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	54LS168			Units
Symbol		Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.7	V
I _{OH}	High Level Output Current			-0.4	mA
I _{OL} Low Level Output Current				4	mA
T _A Free Air Operating Temperature		-55		125	°C
t _s (H) Setup Time HIGH or LOW t _s (L) P _n , CEP or CET to CP		15 15			ns
t_h (H) Hold Time HIGH or LOW t_h (L) P_n , \overline{CEP} or \overline{CET} to CP		5 5			ns
t _s (H) Setup Time HIGH or LOW t _s (L) PE to CP		20 20			ns
th (H) Hold Time HIGH or LOW th (L) PE to CP		0 0			ns
t _s (H) Setup Time HIGH or LOW t _s (L) U/D to CP		25 25			ns
t _h (H) t _h (L)				ns	
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	20 20			ns

Symbol	Parameter	Conditions			Typ (Note 1)	Мах	Unite
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \text{I}_{OH} = \text{Max}, \\ V_{IL} &= \text{Max}, \text{V}_{IH} = \text{Min} \end{split}$	2.5			v	
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \text{I}_{OL} = \text{Max}, \\ V_{IH} &= \text{Min}, \text{V}_{IL} = \text{Max} \end{split}$			0.4	v	
I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 10.0V$			0.1	mA	
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$	Inputs			20	μA
			CET			40	μ
IL	Low Level Input Current	$V_{CC} = Max, V_I = 0.5V$	Data	-0.5		-400	
			CP, PE, U/D, CEP	-30		-400	μΑ
			CET	-60		-800	
los	Short Circuit Output Current	V _{CC} = Max (Note 2)		-20		- 100	mA
lcc	Supply Current	V _{CC} = Max (Note 3)				34	mA

Note 1: All typicals are at V_{CC} = 5V, T_A = 25 ^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: I_{CC} is measured with all outputs open and all inputs grounded.

Switching Characteristics $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$ (See Section 1 for test waveforms and output load)

		54L		
Symbol	Parameter	C _L = 15 pF		Units
		Min	Мах	
f _{Max}	Maximum Clock Frequency	25		MHz
t _{PLH} t _{PHL}	Propagation Delay CP to Q _n		20 20	ns
t _{PLH} t _{PHL}	Propagation Delay CP to \overline{TC}	30 30	ns	
t _{PLH} t _{PHL}	Propagation Delay CET to TC			ns
t _{PLH} t _{PHL}	Propagation Delay U/D to TC		25 25	ns

3

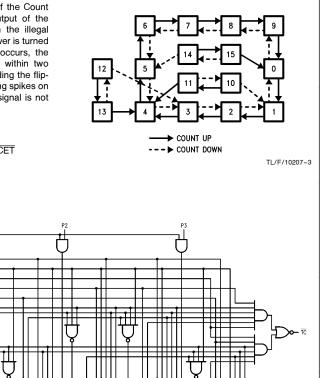
Functional Description

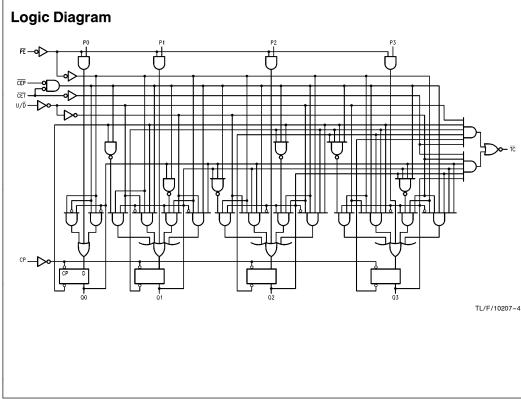
The 'LS168 uses edge-triggered D-type flip-flops and has no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over the other operations, as indicated in the Mode Select Table. When \overline{PE} is LOW, the data on the P0–P3 inputs enters the flip-flops on the next rising edge of the Clock. In order for counting to occur, both $\overrightarrow{\text{CEP}}$ and $\overline{\text{CET}}$ must be LOW and $\overline{\text{PE}}$ must be HIGH. The U/D input then determines the direction of counting. The Terminal Count (TC) output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the COUNT DOWN mode or reaches 9 in the COUNT UP mode. The $\overline{\text{TC}}$ output state is not a function of the Count Enable Parallel (\overline{CEP}) input level. The \overline{TC} output of the 'LS168 decade counter can also be LOW in the illegal states 11, 13 and 15, which can occur when power is turned on or via parallel loading. If an illegal state occurs, the 'LS168 will return to the legitimate sequence within two counts. Since the $\overline{\text{TC}}$ signal is derived by decoding the flipflop states, there exists the possibility of decoding spikes on $\overline{\text{TC}}.$ For this reason the use of $\overline{\text{TC}}$ as a clock signal is not recommended (see logic equation below). 1. Count Enable = $\overline{\text{CEP}} \bullet \overline{\text{CET}} \bullet \overline{\text{PE}}$

2. Up:
$$\overline{TC} = Q0 \bullet Q3 \bullet (U/\overline{D}) \bullet \overline{CET}$$

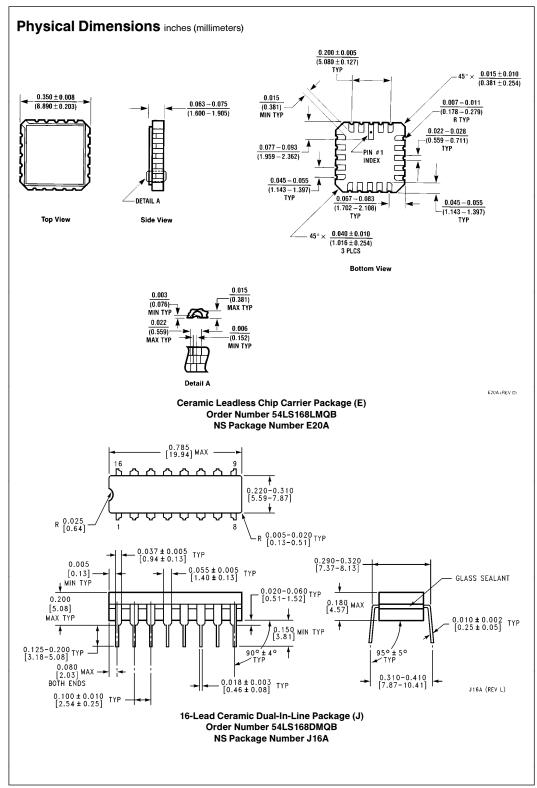
3. Down: $\overline{TC} = Q0 \bullet Q1 \bullet Q2 \bullet Q3 \bullet (U/\overline{D}) \bullet \overline{CET}$

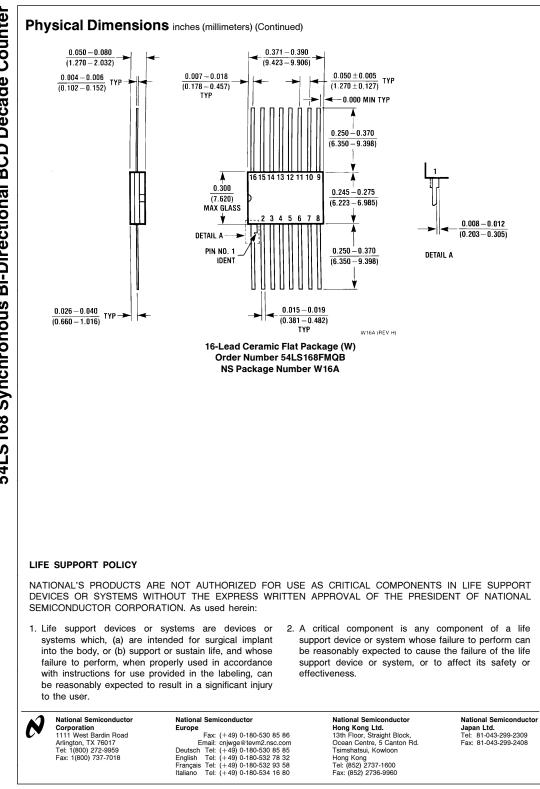
'LS168 Mode Select Table


PE	CEP	CET	U/D	Action on Rising Clock Edge
L	х	Х	х	Load ($P_n \rightarrow Q_n$)
н	L	L	Н	Load ($P_n \rightarrow Q_n$) Count Up (Increment)
н	L	L	L	Count Down (Decrement)
н	н	x	х	No Change (Hold)
н	x	н	Х	No Change (Hold)


H = HIGH Voltage Level

L = LOW Voltage Level


X = Immaterial


State Diagram

4

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications